无穷限第一类Fredholm方程的正则化方法

杨平;伍继梅;吴开谡*

北京化工大学学报(自然科学版) ›› 2013, Vol. 40 ›› Issue (增刊) : 117-121.

PDF(1138 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年5月6日 星期二
Email Alert  RSS
PDF(1138 KB)
北京化工大学学报(自然科学版) ›› 2013, Vol. 40 ›› Issue (增刊) : 117-121.
管理与数理科学

无穷限第一类Fredholm方程的正则化方法

  • 杨平;伍继梅;吴开谡*
作者信息 +

Regularization method for first kind Fredholm equation with infinite range

  • YANG Ping;WU JiMei;WU KaiSu
Author information +
文章历史 +

摘要

研究了无穷限第一类Fredholm积分方程的求解问题。第一类Fredholm方程是不适定问题,解不稳定,必须采用正则化方法处理。为此,利用Tikhonov正则化方法研究这类问题,其中,展平泛函按标准的Sobolev空间范数来构造,正则化参数则通过Morozov偏差原理来选取。最后,证明了由此获得的正则化解存在唯一性。并讨论了求解正则化解的变分方法。

Abstract

The regularization method for solving the first kind Fredholm integral equation in [0, +∞] was studied in this paper. This kind of equation is an ill-posed problem which means the solution of this problem is instable. Therefore, it is necessary to investigate this problem with regularization method. We employed Tikhonov regularization method to research this problem and used norm of Sobolev space to construct flattening function. The regularization parameter was chosen by Morozov principle. In the end, we proved the existence and uniqueness of the regularization solution. Furthermore, we discussed the variationa method for solving regularization solutions.

引用本文

导出引用
杨平;伍继梅;吴开谡*. 无穷限第一类Fredholm方程的正则化方法[J]. 北京化工大学学报(自然科学版), 2013, 40(增刊): 117-121
YANG Ping;WU JiMei;WU KaiSu. Regularization method for first kind Fredholm equation with infinite range[J]. Journal of Beijing University of Chemical Technology, 2013, 40(增刊): 117-121

参考文献

[1]Keller J B. Inverse Problems[J]. Am Math Mon, 1976, 83:107-118.
[2]王振杰. 测量中不适定问题的正则化解法[M]. 北京: 科学出版社, 2006.
Wang Z J. Regularization methods for solving the ill-posed problems in measurement[M]. Beijng: Science Press, 2006. (in Chinese)
[3]Phillips D L. A technique for the numerical solution of certain integral equations of the first kind[J]. Assoc Comput Mach, 1962, 9(1):84-97. 
[4]Tikhonov A N, Arseniin V Y. Solutions of ill-posed problems[J]. New York: John Wiley and Sons, 1977. 
[5]韩波,李莉. 非线性不适定问题的求解方法及其应用[M].北京: 科学出版社, 2011.
Han B, Li L. Methods for solving nonlinear ill-posed problems and its applications[M]. Beijing: Science Press, 2011. (in Chinese)
[6]吉洪诺夫A H, 阿尔先宁B R. 不适定问题的解法[M]. 北京: 地质出版社, 1979:20-64.
Tikhonov A H, Arexn B R. Solutions of illposed problems[M].Beijing: Geological Press, 1979: 20-64. (in Chinese)
[7]门少平, 封建湖. 应用泛函分析[M]. 北京: 科学出版社, 2005.
Men S P, Feng J H. Application of functional analysis[M]. Beijng: Science Press, 2005. (in Chinese)
[8]Morozov V A. On Regularization of ill-posed problems and selection of regularization parameter[J]. Comp Math Phys, 1966, 6(1): 170-175.
[9]肖庭延,于慎根,王艳飞. 反问题的数值解法[M]. 北京: 科学出版社, 2003: 1-44.
Xiao T Y, Yu S G, Wang Y F. Numerical methods for inverse problems[M]. Beijng: Science Press, 2003: 1-44. (in Chinese)
[10]Mroczka J, Szczuczynski D. Inverse problems formulated in terms of first kind Fredholm integral equations in indirect measurements[J]. Metrol Meas Syst, 2009, 16(3):333-357.
[11]Bojarski N. Inverse black body radiation[J]. IEEE Trans, 1982, 30(4): 778-780.
PDF(1138 KB)

757

Accesses

0

Citation

Detail

段落导航
相关文章

/