以SnCl4·5H2O为源物质,氨水为沉淀剂,将采用化学沉淀过程制备得到的前驱体分别采用水热晶化和焙烧晶化两种方法晶化,在不同晶化温度下制备得到SnO2纳米粉体。研究了晶化方式和晶化温度对产品的结构、组成、形貌及分散性能的影响。用X射线衍射(XRD)、X射线能谱(EDS)、透射电子显微镜(TEM)和激光粒度分析等方法表征了产品的性能。结果表明,两种晶化方法制备得到的产品均为结晶状态完好的四方金红石型、纯度较高的SnO2纳米粉体,粉体的晶粒尺寸随着晶化温度的升高逐步增大,随粒径的增大产品的分散性得到较好的改善。与焙烧晶化相比,水热晶化制备得到的样品粒径较小,样品的氧空位浓度较高,粉体粒径的均匀性较好,粒度分布范围较窄。
Abstract
SnO2 anoparticles have been successfully synthesized, by two crystallization methods (hydrothermal crystallization method and calcining crystallization method) at different crystallization temperatures, from Sn(OH)4urry which were got through chemical precipitation of Tin(Ⅳ) chloride pentahydrate (SnCl4·5H2O) using aqueous ammonia as a precipitating agent. The influences of crystallization method and crystallization temperature on the surface morphology, structural properties and dispersing performance of SnO2 nanoparticles were investigated by XRD, EDS, TEM, the laser particle size analyzer. The results showed that SnO2 crystallites with tetragonal rutile structure and super purity were obtained by two crystallization methods. The particle size of crystal grain increased with the increase of crystallization temperature, and the dispersity of the particles was improved obviously as
the particle size increased. Compared with the samples prepared by calcining crystallization method, the samples synthesized by hydrothermal crystallization method were smaller in particle size with higher oxygen vacancies and more narrow size distribution.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Tan O K, Cao W, Hu Y, et al. Nanostructured oxides by highenergy ball milling technique: application as gas sensing materials[J]. Solid State Ionics, 2004, 172(1/2/3/4): 309-316.
[2]Taette T, Hussainov M, Paalo M, et al. Alkoxidebased precursors for direct drawing of metal oxide microand nanofibres[J]. Science and Technology of Advanced Matierials, 2011, 12(3): 1-12.
[3]Won ik K, Yoon H, JeongHoon J. Synthesis of SnO2nano hollow spheres and their size effects in lithium ion battery anode application[J]. Journal of Power Sources, 2013, 225: 108-112.
[4]Xu M H, Cai F S, Yin J. Facile synthesis of highly ethanolsensitive SnO2 nanosheets using homogeneous precipitation method[J]. Sensors and Actuators B, 2010, 145(2): 875-878.
[5]KrishnaM, Komarneni S. Conventional vs microwavehydrothermal synthesis of tin oxide, SnO2 anoparticles[J]. Ceramics International, 2009, 35(8): 3375-3379.
[6]Reddy K M, Satyanarayana L, Manorama S V. A comparative study of the gas sensing behavior of nanostructured nickel ferrite synthesized by hydrothermal and reverse micelle techniques[J]. Materials Research Bulletin, 2004, 39(10): 1491-1498.
[7]Sivasankar R A, Figueiredo N M, Cavaleiro A. Pulsed direct current magnetron sputtered nanocrystalline tin oxide films[J]. Applied Surface Science, 2012, 258(22): 8902-8907.
[8]Al aashani , Radiman S, Tabet N, et al. Optical properties of SnO2 nanostructures prepared via onestep thermal decomposition of tin (Ⅱ) chloride dehydrate[J]. Science and Engineering B, 2012, 177(6): 462-470.
[9]Ke C, Zhu W, Pan J S, et al. Annealing temperature dependent oxygen vacancy behavior in SnO2 thin films fabricated by pulsed laser deposition[J]. Current Applied Physics, 2011, 11(3): S306-S309.
[10]颜志鹏, 崇明本, 程党国, 等. 纯与掺杂CeO2的氧化还原性质及其催化领域的应用[J]. 化学进展, 2008, 20(7/8): 1037-1043.
Yan Z P, Chong M B, Cheng D G, et al. Redox properties of pure and doped ceria and their applications in catalysis[J]. Progress in Chemistry, 2008, 20(7/8): 1037-1043. (in Chinese)
[11]周存, 郑帼, 程博闻. 掺锑氧化锡纳米粉体的表面改性[J]. 天津工业大学学报, 2008, 27(4): 34-38.
Zhou C, Zheng G, Cheng B W. Surface modification of nanoATO powders[J]. Journal of Tianjin Polytechnic University, 2008, 27(4): 34-38. (in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}