结合主成分分析法的可拓神经网络三维荧光光谱的分类识别研究

尚云鹏;金翠云*;王颖

北京化工大学学报(自然科学版) ›› 2013, Vol. 40 ›› Issue (5) : 100-103.

PDF(1115 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年5月8日 星期四
Email Alert  RSS
PDF(1115 KB)
北京化工大学学报(自然科学版) ›› 2013, Vol. 40 ›› Issue (5) : 100-103.
机电工程和信息科学

结合主成分分析法的可拓神经网络三维荧光光谱的分类识别研究

  • 尚云鹏;金翠云*;王颖
作者信息 +

Three-dimensional fluorescence spectral classification based on extention neural networks combined with principal component analysis

  • SHANG YunPeng;JIN CuiYun;WANG Ying
Author information +
文章历史 +

摘要

提出了结合主成分分析法(PCA)的可拓神经网络算法,并且将其应用于柴油、煤油、汽油的三维荧光光谱分类识别中。实验结果表明,相比传统的BP神经网络算法,该算法迭代数下降了80步,识别率由89%提高到93%,体现了结合算法的高识别率和高效性。

Abstract

A combination of principal component analysis (PCA) and extension neural network algorithms has been employed for the classification and recognition of the threedimensional fluorescence spectra of diesel, kerosene and gasoline. Compared to the traditional BP neural network algorithm, there was a decrease of 80 in the number of iterations of the algorithm required and the recognition ratio increased from 89% to 93%, showing the high recognition ratio and efficiency of the combined algorithm.

引用本文

导出引用
尚云鹏;金翠云*;王颖. 结合主成分分析法的可拓神经网络三维荧光光谱的分类识别研究[J]. 北京化工大学学报(自然科学版), 2013, 40(5): 100-103
SHANG YunPeng;JIN CuiYun;WANG Ying. Three-dimensional fluorescence spectral classification based on extention neural networks combined with principal component analysis[J]. Journal of Beijing University of Chemical Technology, 2013, 40(5): 100-103

参考文献

[1]刘海龙, 吴希军, 田广军. 三维荧光光谱技术及平行因子分析法在绿茶分析及种类鉴别中的应用[J].中国激光, 2008, 35(5): 685-689.
Liu H L, Wu X J, Tian G J. Threedimensional fluorescence spectroscopy combined with parallel factor analysis as a complementray technique for green tea characterization[J]. Chinese Journal of Lasers, 2008, 35(5): 685-689. (in Chinese)
[2]王志刚, 刘文清, 张玉钧, 等. 三维荧光光谱法分类测量水体浮游植物浓度[J]. 中国环境科学, 2008, 28(2): 136-141.
Wang Z G, Liu W Q, Zhang Y J, et al. The classified measuring of three dimensional excitationemission fluorescence matrix technique on phytoplankton concentration in water body[J]. China Environmental Science, 2008, 28(2): 136-141. (in Chinese)
[3]张芳, 王良, 苏荣国, 等. 小波分析在活体浮游植物离散三维荧光光谱特征提取及识别中的应用研究[J]. 传感技术学报, 2007, 20(10): 2143-2150.
Zhang F, Wang L, Su R G, et al. Research on wavelet analysis in the characteristics extracting and identification of discrete 3D fluorescence spectra of phytoplankton[J]. Chinese Journal of Sensors and Actuators, 2007, 20(10): 2143-2150. (in Chinese)
[4]田广军, 史锦姗. 基于表观特征的三维荧光光谱参量化油种鉴别[J]. 仪器仪表学报, 2005, 26(8): 727-729.
Tian G J, Shi J S. Oil identification based on parameterization of threedimensional fluorescence spectrum[J]. Chinese Journal of Scientific Instrument, 2005, 26(8): 727-729. (in Chinese)
[5]田广军. 水中矿物油三维荧光谱的特征谱的特征提取与光谱重构[J]. 光谱学与光谱分析, 2008, 28(4): 895-899.
Tian G J. Feature abstraction and spectral reconstruction of threedimensional fluorescence spectra of oil in water[J]. Spectroscopy and Spectral Analysis, 2008, 28(4): 895-899. (in Chinese)
[6]孙佰清, 邢爱国, 张积宾, 等. 可拓神经网络模型的设计与实现[J]. 哈尔滨工业大学学报, 2006, 38(7): 1156-1160.
Sun B Q, Xing A G, Zhang J B, et al. Design and implementation of extension neural network model[J]. Journal of Harbin Institute of Technology, 2006, 38(7): 1156-1160. (in Chinese)
PDF(1115 KB)

1875

Accesses

0

Citation

Detail

段落导航
相关文章

/