利用一套激光动态监视、升温速率可控的溶解度测量系统装置,测定了常压下温度范围为277.15~334.15 K内 DL-酒石酸在6种纯溶剂中的溶解度数据,并用Apelblat方程、λh方程和NRTL方程对实验数据进行了关联。结果发现对于纯溶剂体系,DL-酒石酸溶解度的计算值与实验测定值吻合良好;选用的3种方程在所研究的温度和浓度范围内是适用的,可以为DL-酒石酸的结晶分离过程提供数据支持。
Abstract
The solubilities of DL-tartaric in water, methanol, ethanol, N-methylpyrrolidone (NMP), N,Ndimethylformamide (DMF) and N,N-dimethylacetamide (DMAC) have been measured using a laser monitoring technique in the temperature range from 277.15 to 334.15K. The experimental results have been correlated with different equations. For the six pure solvents selected, the data fit quite well with the modified Apelblat equation, the λh equation and the NRTL equation.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Sun Q H, Deng Y L. The unique role of DL-Tartaric acid in determining the morphology of polyaniline nanostructures during an interfacial oxidation polymerization[J]. Materials Letters, 2008, 62(12): 1831-1834.
[2]Sakurai T, Misaka T, Nagai T, et al. pHdependent inhibition of the human bitter taste receptor hTAS2R16 by a variety of acidic substances[J]. Journal of Agricultural and Food Chemistry, 2009, 57(6): 2508-2514.
[3]Apelblat A, Manzurola E. Solubility of oxalic, malonic, succinic, adipic, maleic, malic, citric, and tartaric acids in water from 278.15 to 338.15 K[J]. The Journal of Chemical Thermodynamics, 1987, 19(3): 317-320.
[4]DhasS A M B, Suresh M, Bhagavannarayana G, et al. Growth and characterization of L-Tartaric acid, an NLO material[J]. Journal of Crystal Growth, 2007, 309(1): 48-52.
[5]Kr ber H, Teipel U. Materials processing with supercritical antisolvent precipitation: process parameters and morphology of tartaric acid[J]. The Journal of Supercritical Fluids, 2002, 22(3): 229-235.
[6]Li Q S, Yi Z M, Su M G, et al. Solubility of dioxopromethazine hydrochloride in different solvents[J]. Journal of Chemical and Engineering Data, 2008, 53(1): 301-302.
[7]Wang S, Wang J K, Yin Q X. Measurement and correlation of solubility of 7aminocephalosporanic acid in aqueous acetone mixtures[J]. Industrial and Engineering Chemistry Research, 2005, 44(10): 3783-3787.
[8]Li D Q, Liu D Z, Wang F A. Solubilities of terephthalaldehydic, p-toluic, benzoic, terephthalic, and isophthalic acids in N-methyl-2-pyrrolidone from 295.65 K to 371.35 K [J]. Journal of Chemical and Engineering Data, 2001, 46(1): 172-173.
[9]Hao H X, Wang J K, Wang Y L. Solubility of dexamethasone sodium phosphate in different solvents[J]. Journal of Chemical and Engineering Data, 2004, 49(6): 1697-1698.
[10]Apelblat A, Manzurola E. Solubility of o-acetylsalicylic, 4-aminosalicylic, 3, 5-dinitrosalicylic, and p-toluic acid, and magnesium DL-aspartate in water from T=(278 to 348) K[J]. The Journal of Chemical Thermodynamics, 1999, 31(1): 85-91.
[11]Wang L C, Wang F A. Solubility of niacin in 3-picoline+water from (287.65 to 359.15) K[J]. Journal of Chemical and Engineering Data, 2004, 49(1): 155-156.
[12]Buchowski H, Ksiazczak A, Pietrzyk S. Solvent activity along a saturation line and solubility of hydrogenbonding solids [J]. The Journal of Physical Chemistry, 1980, 84(3): 975-979.
[13]Renon H, Prausnitz J M. Local compositions in thermodynamic excess functions for liquid mixtures[J]. American Institute of Chemical Engineer Journal, 1968, 14(1): 135-144.
[14]LePree J M, Mulski M J, Connors K A. Solvent effects on chemical processes. Part 6. The phenomenological model applied to the solubility of naphthalene and 4-nitroaniline in binary aqueousorganic solvent mixtures[J]. Journal of the Chemical Society, 1994, 7(1): 1491-1497.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}