Taguchi法优化Bacillus amyloliquefaciens fmb50产surfactin工业发酵培养基

姚树林;陆兆新;吕凤霞;王昱沣;别小妹*

北京化工大学学报(自然科学版) ›› 2012, Vol. 39 ›› Issue (4) : 77-83.

PDF(1001 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年7月26日 星期六
Email Alert  RSS
PDF(1001 KB)
北京化工大学学报(自然科学版) ›› 2012, Vol. 39 ›› Issue (4) : 77-83.
生物技术与环境工程

Taguchi法优化Bacillus amyloliquefaciens fmb50产surfactin工业发酵培养基

  • 姚树林;陆兆新;吕凤霞;王昱沣;别小妹*
作者信息 +

Optimization using the Taguchi method of the industrial fermentation medium for Bacillus amyloliquefaciens fmb50 for surfactin production

  • YAO ShuLin;LU ZhaoXin;LV FengXia;WANG YuFeng;BIE XiaoMei
Author information +
文章历史 +

摘要

采用田口方法(Taguchi method)对影响surfactin生产的各因素进行筛选,并对显著因子的水平进行优化后得出最佳配比。统计分析结果表明:玉米粉、硝酸铵和O43-对其产量影响显著。获得高产工业发酵培养基的配方为:玉米粉35g/L,硝酸铵为15g/L,尿素6g/L,O43- 20mmol/L,Mn2+ 0.5mmol/L,Mg2+ 0.1mmol/L,Cu2+ 12.8μmol/L,Fe2+ 1μmol/L,Ca2+ 0.5μmol/L。此培养基surfactin产量达2294.28mg/L,较原有Landy培养基产量提高15%,生产成本降低40%,为实现surfactin的工业化生产提供了基础。

Abstract

To provide some fundamental data about the industrial scale production of the antimicrobial lipopeptide surfactin, the design of a cheap, high yield and stable industrial medium has been studied. Using the Taguchi method to screeng the main factors affecting the production of surfactin, the levels of the significant factors were optimized in order to achieve maximal surfactin yield. The results showed that corn powder, ammonium nitrate and O43- all had a significant effect on surfactin production. By further optimizing each factor, the optimal media composition was found to be: corn powder 35g/L, ammonium nitrate 15g/L, carbamide 6g/L, O43- 20mmol/L, Mn2+ 0.5mmol/L, Mg2+ 0.1mmol/L, Cu2+ 12.8μmol/L, Fe2+ 1μmol/L, and Ca2+ 0.5μmol/L. This medium composition afforded 2294.28mg/L of surfactin, which was 15% higher than the original Landy medium, and the cost was reduced by 40%.

引用本文

导出引用
姚树林;陆兆新;吕凤霞;王昱沣;别小妹*. Taguchi法优化Bacillus amyloliquefaciens fmb50产surfactin工业发酵培养基[J]. 北京化工大学学报(自然科学版), 2012, 39(4): 77-83
YAO ShuLin;LU ZhaoXin;LV FengXia;WANG YuFeng;BIE XiaoMei. Optimization using the Taguchi method of the industrial fermentation medium for Bacillus amyloliquefaciens fmb50 for surfactin production [J]. Journal of Beijing University of Chemical Technology, 2012, 39(4): 77-83

参考文献

[1]Sen R. Surfactin: Biosynthesis, Genetics and Potential Applications[J]. Advances in Experimental Medicine and Biology, 2010, 672: 316-323.
[2] Peypoux F, Bonmatin J M, Wallach J. Recent trends in the biochemistry of surfactin[J]. Appllied Microbiology and Biotechnology, 1999, 51: 553-563.
[3] Yeh M S, Wei Y H, Chang J S. Bioreactor design for enhanced carrierassisted surfactin production with Bacillus subtilis[J]. Process Biochemistry, 2006, 41:1799-1805.
[4] 方传记,陆兆新,孙立军,等. 淀粉野花芽孢杆菌抗菌脂肽发酵培养基及发酵条件的优化[J]. 中国农业科学, 2008, 41(2): 533-539.
Fang C J, Lu Z X, Sun L J, et al. Optimization of fermentation technology for lipopeptides producing bacteria Bacillus amyloliquefaciens ES-2-4[J]. Scientia Agricultura Sinica, 2008, 41(2): 533-539. (in Chinese)
[5] 田口玄一. 实验设计法[M]. 北京:机械工业出版社,1987: 449-457.
Genichi T. Method of experimental design[M]. Beijing: China Machine Press, 1987: 449-457. (in Chinese)
[6] 艾嘉. 芽孢杆菌发酵液中抗菌脂肽的定量检测方法及应用[D]. 江苏 南京:南京农业大学食品科学与技术学院,2008.
Ai J. A quantitative detection method and application of antimicrobial lipopetides from Baccilus SP. Fermentation broth[D]. Nanjing Jiangsu: College of Food Science and Technology, Nanjing Agricultural University, 2008. (in Chinese)
[7] Wei Y H, Lai C C, Chang J S. Using Taguchi experimental design methods to optimize trace element composition for enhanced surfactin production by Bacillus subtilis ATCC 21332[J]. Process Biochemistry, 2007, 42: 40-45.
[8] Suzuki T, Yamane T, Shimizu S. Mass production of poly-β-hydroxybutyric acid by fully automatic fed-batch culture of methylotroph[J] . Appllied Microbiology and Biotechnology, 1986, 23: 322-329.
[9] Reuter K, Mofid M R, Marahiel M A, et al. Crystal structure of the surfactin synthetase activating enzyme Sfp: a prototype of the 4-phosphopantetheinyl transferase superfamily[J]. The EMBO Journal, 1999,18 (23): 6823-6831.
[10] Hamoen L M, Venema G, Kuipers O P. Controlling competence in Bacillus subtilis: shared use of regulators[J]. Microbiology, 2003, 149: 99-17.
[11] Jacques P, Hbid C, Destain J, et al. Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett-Burman design[J]. Appllied Microbiology and Biotechnology, 1999, 77: 223-233.
[12] Sen R. Response surface optimization of the critical media components for the production of surfactin[J]. Journal of Chemical Technology and Biotechnology, 1997, 68: 263-270.
[13] 胡彪, 张启文, 赵新, 等. 基于田口方法的CRT热爆切割设备优化设计研究[J]. 机械设计与制造, 2011, 5: 15-17.
Hu B, Zhang Q W, Zhao X, et al. Research on optimization design of CRT thermal explosion cutting equipment based on Taguchi method[J]. Machinery Design Manufacture, 2011, 5: 15-17. (in Chinese)
[14] 裴磊, 成艾国, 李铁柱, 等. 基于田口鲁棒设计的乘员约束系统性能优化[J]. 中国机械工程, 2011, 22 (9):1128-1133.
Pei L, Cheng A G, Li T Z, et al. Performance improvement of occupant restraint system based on Taguhi robust design approach[J]. China Mechanical Engineering,2011, 22(9): 1128-1133. (in Chinese)
PDF(1001 KB)

3027

Accesses

0

Citation

Detail

段落导航
相关文章

/