磷钨酸盐催化果糖水解制备5-羟甲基糠醛

曲永水;黄崇品*;宋彦磊;张傑;陈标华

北京化工大学学报(自然科学版) ›› 2012, Vol. 39 ›› Issue (4) : 12-16.

PDF(961 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年7月12日 星期六
Email Alert  RSS
PDF(961 KB)
北京化工大学学报(自然科学版) ›› 2012, Vol. 39 ›› Issue (4) : 12-16.
化学与化学工程

磷钨酸盐催化果糖水解制备5-羟甲基糠醛

  • 曲永水;黄崇品*;宋彦磊;张傑;陈标华
作者信息 +

Conversion of fructose to 5-hydroxymethylfurfural catalyzed by heteropolyacid salts

  • QU YongShui;HUANG ChongPin;SONG YanLei;ZHANG Jie;CHEN BiaoHua
Author information +
文章历史 +

摘要

以磷钨酸盐为催化剂,研究了其对果糖水解过程的影响,考察了反应时间、温度、催化剂种类及用量等因素对5-羟甲基糠醛(5-HMF)收率的影响。实验结果表明:160℃时在二甲基亚砜(DMSO)中,以CePW12O40为催化剂,反应8h,5-HMF的收率最高为99.2%;该催化剂循环使用6次,仍能保持较高活性,5-HMF的收率仍能保持90.5%。与传统加热方法相比,微波加热可明显加快反应速率,缩短反应时间。

Abstract

The dehydration of fructose to 5-hydroxymethylfurfural (5-HMF) catalyzed by a variety of heteropolyacid salts has been studied. The highest 5-HMF yield was 99.2%, obtained using a CePW12O40 catalyst in DMSO with 5% (mass fraction) of catalyst at 160℃ with reaction time 8h. Furthermore, the conversion of fructose to 5-HMF catalyzed by heteropolyacid salts was conducted under microwave conditions. Compared with the conventional heating method, microwave heating showed a remarkable ability to both accelerate the reaction rate and improve the yield of 5-HMF. Moreover, the catalyst could be separated from the reaction mixture by a simple process at the end of the reaction and the catalyst could be reused six times without loss of activity.

引用本文

导出引用
曲永水;黄崇品*;宋彦磊;张傑;陈标华. 磷钨酸盐催化果糖水解制备5-羟甲基糠醛[J]. 北京化工大学学报(自然科学版), 2012, 39(4): 12-16
QU YongShui;HUANG ChongPin;SONG YanLei;ZHANG Jie;CHEN BiaoHua . Conversion of fructose to 5-hydroxymethylfurfural catalyzed by heteropolyacid salts[J]. Journal of Beijing University of Chemical Technology, 2012, 39(4): 12-16

参考文献

[1]TongX L, Ma Y, Li Y D. Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes[J]. Applied Catalysis A: General, 2010, 385:1-13.
[2]Climent M J, Corma A, Iborra S. Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts[J]. Green Chemistry, 2011, 13: 520-540.
[3]彭新文, 吕秀阳. 5-羟甲基糠醛在稀硫酸催化下的降解反应动力学[J]. 化工学报, 2008, 59(5): 1550-1555.
Peng X W, Lu X Y. Decomposition kinetics of 5-hydroxymethylfurfural catalyzed by dilute sulfuric acid[J].Journal of Chemical Industry and Engineering(China), 2008, 59(5): 1550-1555. (in Chinese)
[4]孙春蕾, 刘仕伟, 李露, 等. Bronsted酸性离子液体催化果糖脱水制备5-羟甲基糠醛[J]. 青岛科技大学学报: 自然科学版, 2011, 32(4): 331-334. Sun C L, Liu S W, Li L, et al. Dehydration of fructose to prepare 5-hydroxymethylfurfural catalyzed by Bronsted acidic ionic liquids[J]. Journal of Qingdao University of Science and Technology: Natural Science Edition, 2011, 32(4): 331-334. (in Chinese)
[5]Asghari F S, Yoshida H. Acid-catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water[J]. Ind Eng Chem Res, 2006, 45(7): 2163-2173.
[6]董喜恩, 胡宁播, 罗根祥, 等. H-Y/β 双微孔沸石分子筛催化果糖脱水生成5-羟甲基糠醛的研究[J]. 化工科技, 2010, 18(4): 24-26.
Dong X E, Hu N B, Luo G X, et al. Dehydration of fructose into 5hydroxymethylfurfural in the presence of HY/β double microporous zeolite[J]. Science & Technology in Chemical Industry, 2010, 18(4): 24-26. (in Chinese)
[7]沈翔, 魏小荣, 王焰新, 等. SO2-4TiO2/MOR新型固体酸催化果糖制备5羟甲基糠醛[J]. 化工学报, 2011, 62(12): 3411-3418.
Shen X, Wei X R, Wang Y X, et al. SO2-4TiO2/MOR as novel solid acid catalyst for dehydration of fructose to 5-hydroxymethylfurfural[J]. Journal of Chemical Industry and Engineering (China), 2011, 62(12): 3411-3418. (in Chinese)
[8]Zakrzewska M E, BogelLukasik E, BogelLukasik R. Ionic liquidmediated formation of 5-hydroxymethylfurfurals: A promising biomass-derived building block[J]. Chem Rev, 2011, 111: 397-417.
[9]孙春蕾, 刘仕伟, 李露, 等. 果糖脱水制备5-羟甲基糠醛的研究[J]. 精细石油化工进展, 2011, 12(2): 50-52.
Sun C L, Liu S W, Li L, et al. Research on Preparation of 5-Hydroxymethylfurfural by Fructose Dehydration[J]. Advances in Fine Petrochemicals, 2011, 12(2): 50-52. (in Chinese)
[10]周立群, 柳士忠, 孙聚堂. 纳米复合杂多酸H3PW12O40/SiO2催化剂的制备、表征及其应用研究[J]. 光谱学与光谱分析, 2004, 24(10): 1217-1220. Zhou L Q, Liu S Z, Sun J T. Catalytic application of synthesizing n-butyl acrylate by a new type nanometer complex heteropoly acid catalyst H3PW12O40/SiO2[J]. Spectroscopy and Spectral Analysis, 2004, 24(10): 1217-1220. (in Chinese)
[11]刘欣颖. 固体酸催化果糖选择性合成5-羟甲基糠醛(HMF)[D]. 大连: 大连理工大学, 2007.
Liu X Y. The selective synthesis of fructose to 5hydroxymethylfurfural (HMF) catalyzed by solid acid[D]. Dalian: Dalian University of Technology, 2007. (in Chinese)
[12]张祯成, 安庆大, 张绍印, 等. 锰卟啉/钒取代杂多酸配合物的合成、表征和性能研究[J]. 光谱学与光谱分析, 2007, 27(1): 88-90. Zhang Z C, An Q D, Zhang S Y, et al. Manganeseporphyrin/ vanadium-substituted polyoxometalate new coordination compound: synthesis, characterization and catalytic activity[J]. Spectroscopy and Spectral Analysis, 2007, 27(1): 88-90. (in Chinese)
[13]Qu Y S, Huang C P, Zhang J, et al. Efficient dehydration of fructose to 5-hydroxymethylfurfural catalyzed by a recyclable sulfonated organic heteropolyacid salt[J]. Bioresource Technology, 2012, 106: 170-172.
[14]Yang F L, Liu Q S, Bai X F, et al. Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst[J]. Bioresource Technology, 2011, 102: 3424-3429.
[15]杨伯伦, 贺拥军. 微波加热在化学反应中的应用进展[J]. 现代化工, 2001, 21(4):8-12.
Yang B L, He Y J. New progress of microwave heating applied in chemical reaction[J]. Modern Chemical Industry, 2001, 21(4): 8-12. (in Chinese)

PDF(961 KB)

3062

Accesses

0

Citation

Detail

段落导航
相关文章

/