基于模糊二叉树模型的美式看跌期权定价问题

卢丽娟;胡云姣*

北京化工大学学报(自然科学版) ›› 2012, Vol. 39 ›› Issue (3) : 114-118.

PDF(922 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年7月24日 星期四
Email Alert  RSS
PDF(922 KB)
北京化工大学学报(自然科学版) ›› 2012, Vol. 39 ›› Issue (3) : 114-118.
管理与数理科学

基于模糊二叉树模型的美式看跌期权定价问题

  • 卢丽娟;胡云姣*
作者信息 +

Pricing of American put options based on a fuzzy binomial model

  • LU LiJuan;HU YunJiao
Author information +
文章历史 +

摘要

市场中影响期权价格的因素具有随机性和模糊性的特点。本文假定股票的价格波动为抛物型模糊数,推导出了模糊风险中性概率,进而将美式期权定价的传统二叉树模型扩展到模糊二叉树模型,给出了该模型的美式看跌期权定价过程和最优实施时间。最后的数值算例将该模型应用到国内的权证市场,针对唯一一只美式认沽权证进行定价分析,结果表明利用模糊二叉树模型定价能够得到一个合理的期权模糊价格区间。投资者可根据自身风险偏好程度改变置信水平和抛物型模糊数来进行投资决策。

Abstract

Both randomness and fuzziness should be considered when there is uncertainty in the market. In this paper the volatility of stock price was replaced by parabolic type fuzzy numbers. The fuzzy risk-neutral probabilities were then deduced in order to make a fuzzy binomial model, which is based on the binomial model. The price-setting process of American put options and the optimal exercise times were studied in detail. Furthermore, a numerical example was used to illustrate how to price a single put warrant in the Chinese domestic market. The results indicate that a rational fuzzy option price interval can be evaluated by a fuzzy binomial model and investors can make strategic decisions by changing the confidence levels and parabolic type fuzzy numbers.

引用本文

导出引用
卢丽娟;胡云姣*. 基于模糊二叉树模型的美式看跌期权定价问题[J]. 北京化工大学学报(自然科学版), 2012, 39(3): 114-118
LU LiJuan;HU YunJiao. Pricing of American put options based on a fuzzy binomial model[J]. Journal of Beijing University of Chemical Technology, 2012, 39(3): 114-118

参考文献

[1]Muzzioli S, Torricelli C. A multi-period binomial model for pricing options in a vague world[J]. Journal of Economic Dynamics and Control, 2004, 28: 861-887.
[2]Yoshida Y. The valuation of European options in uncertain environment[J]. European Journal of Operational Research, 2003, 145: 221-229.
[3]Muzzioli S, Reynaerts H. American option pricing with imprecise risk-neutral-probabilities[J]. International Journal of Approximate Reasoning, 2008, 49:140-147.
[4]Yoshida Y. A discrete-time model of American put option in an uncertain environment[J]. European Journal of Operational Research, 2003, 151: 153-166.
[5]Wu H C. Using fuzzy sets theory and Black-Scholes formula to generate pricing boundaries of European options[J]. Applied Mathematics and Computation, 2007, 185: 136-146.
[6]韩立岩,周娟. Knight不确定环境下基于模糊测度的期权定价模型[J]. 系统工程理论与实践,2007(12):123-132.
Han L Y, Zhou J. Option pricing with fuzzy measures under knightian uncertainty[J]. Systems Engineering-Theory & Practice, 2007(12): 123-132. (in Chinese)
[7]李伟, 韩立岩. Knight不确定条件下的模糊二叉树期权定价模型[J]. 中国管理科学, 2009, 17(6):9-16.
Li W, Han L Y. The fuzzy binomial option pricing model under knightian uncertainty[J]. Chinese Journal of Management Science, 2009, 17(6): 9-16. (in Chinese)
[8]于孝建. 模糊环境下美式看跌期权的定价研究[J]. 经济数学,2010,27(2):67-73.
Yu X J. Pricing American put option under fuzzy environments[J]. Mathematics in Economics, 2010, 27(2): 67-73. (in Chinese)
[9]Bodjanova S. Median value and median interval of a fuzzy number[J]. Information Sciences, 2005, 172: 73-89.
[10] Cox J C, Ross S A, Rubinstein M. Option pricing: a simplified approach[J]. Journal of Financial Economics, 1979, 7(3): 229-263.
PDF(922 KB)

3584

Accesses

0

Citation

Detail

段落导航
相关文章

/