[1]Muzzioli S, Torricelli C. A multi-period binomial model for pricing options in a vague world[J]. Journal of Economic Dynamics and Control, 2004, 28: 861-887.
[2]Yoshida Y. The valuation of European options in uncertain environment[J]. European Journal of Operational Research, 2003, 145: 221-229.
[3]Muzzioli S, Reynaerts H. American option pricing with imprecise risk-neutral-probabilities[J]. International Journal of Approximate Reasoning, 2008, 49:140-147.
[4]Yoshida Y. A discrete-time model of American put option in an uncertain environment[J]. European Journal of Operational Research, 2003, 151: 153-166.
[5]Wu H C. Using fuzzy sets theory and Black-Scholes formula to generate pricing boundaries of European options[J]. Applied Mathematics and Computation, 2007, 185: 136-146.
[6]韩立岩,周娟. Knight不确定环境下基于模糊测度的期权定价模型[J]. 系统工程理论与实践,2007(12):123-132.
Han L Y, Zhou J. Option pricing with fuzzy measures under knightian uncertainty[J]. Systems Engineering-Theory & Practice, 2007(12): 123-132. (in Chinese)
[7]李伟, 韩立岩. Knight不确定条件下的模糊二叉树期权定价模型[J]. 中国管理科学, 2009, 17(6):9-16.
Li W, Han L Y. The fuzzy binomial option pricing model under knightian uncertainty[J]. Chinese Journal of Management Science, 2009, 17(6): 9-16. (in Chinese)
[8]于孝建. 模糊环境下美式看跌期权的定价研究[J]. 经济数学,2010,27(2):67-73.
Yu X J. Pricing American put option under fuzzy environments[J]. Mathematics in Economics, 2010, 27(2): 67-73. (in Chinese)
[9]Bodjanova S. Median value and median interval of a fuzzy number[J]. Information Sciences, 2005, 172: 73-89.
[10] Cox J C, Ross S A, Rubinstein M. Option pricing: a simplified approach[J]. Journal of Financial Economics, 1979, 7(3): 229-263.