理查德森数对多孔介质T型管道近壁面处流动与传热的影响

王永伟;卢涛*;王奎升

北京化工大学学报(自然科学版) ›› 2012, Vol. 39 ›› Issue (2) : 95-100.

PDF(1155 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年7月24日 星期四
Email Alert  RSS
PDF(1155 KB)
北京化工大学学报(自然科学版) ›› 2012, Vol. 39 ›› Issue (2) : 95-100.
机电工程和信息科学

理查德森数对多孔介质T型管道近壁面处流动与传热的影响

  • 王永伟;卢涛*;王奎升
作者信息 +

Effect of Richardson number on the flow and heat transfer near the wall in a T-junction with porous media

  • WANG YongWei; LU Tao;WANG KuiSheng
Author information +
文章历史 +

摘要

对多孔介质T型方管内冷热流体混合过程的流动和热传递进行大涡模拟,获得了近壁面处湍流混合的瞬时速度和温度,分析了3种理查德森数(Ri=-0.517,-0.093,0.517)对流动与传热的影响。数值结果表明:无论理查德森数Ri为正或负,在热流体区,多孔介质骨架温度较低,而在冷流体区,多孔介质骨架温度较高,说明热量从高温流体通过多孔介质向低温流体传递;最大温度波动发生在近壁面处的上部;由于多孔介质的湍动增强作用,减弱了浮升力对流动的影响,不同理查德森数对流动和传热的影响不够明显。

Abstract

Large-eddy simulation (LES) has been employed to simulate the mixing of hot and cold fluids in a T-junction packed with porous media. The velocity and temperature of the turbulent mixing are obtained near the wall. The influences of different Richardson numbers (Ri=-0.517,-0.093, and 0.517) on the flow and heat transfer have been analyzed. The numerical results show that for both positive or negative Richardson numbers, the temperature of the solid skeleton is lower than that of the fluid in the hot fluid zone while it is higher than that of the fluid in the cold fluid zone, which indicates that heat is transferred from hot fluid to cold fluid through the solid skeleton. The maximum temperature fluctuation occurs near the top wall in the near-wall plane. The influence of the Richardson number on the flow and heat transfer in the T-junction is not obvious, due to the enhancement of turbulence in porous media.

引用本文

导出引用
王永伟;卢涛*;王奎升. 理查德森数对多孔介质T型管道近壁面处流动与传热的影响[J]. 北京化工大学学报(自然科学版), 2012, 39(2): 95-100
WANG YongWei; LU Tao;WANG KuiSheng. Effect of Richardson number on the flow and heat transfer near the wall in a T-junction with porous media[J]. Journal of Beijing University of Chemical Technology, 2012, 39(2): 95-100

参考文献

[1] 卢涛, 成鹏飞, 朱维宇. 填充有多孔介质的T型通道内冷热流体混合过程的大涡模拟[J]. 热科学与技术, 2010, 9(3): 194-199.
Lu T, Cheng P F, Zhu W Y. Large-eddy Simulations of process of mixing hot and cold fluids in T-junction with porous medium[J]. Journal of Thermal Science and Technology, 2010, 9(3): 194-199. (in Chinese)
[2] Zhu W Y, Lu T, Jiang P X, et al. Large eddy simulation of hot and cold fluids mixing in a T-junction for predicting thermal fluctuations[J]. Applied Mathematics and Mechanics: English Edition, 2009, 30(11): 1379-1392.
[3] Naik-Nimbalkar V S, Patwardhan A W, Banerjee I, et al. Thermal mixing in T-junctions[J]. Chemical Engineering Science, 2010, 65(22): 5901-5911.
[4] 王海军, 卢冬华, 罗毓珊, 等. 压水堆主系统T型三通管传热实验研究[J]. 核动力工程, 2002, 23(3): 17-21.
Wang H J, Lu D H, Luo Y S, et al. Experiment study on heat transfer characteristic of T-junction in cooling system of PWR[J]. Nuclear Power Engineering, 2002, 23(3): 17-21. (in Chinese)
[5] Lu T, Jiang P X, Guo Z J, et al. Large-eddy simulations (LES) of temperature fluctuations in a mixing tee with/without a porous medium[J]. International Journal of Heat and Mass Transfer, 2010, 53(21/22): 4458-4466.
[6] 王补宣, 张志军, 杜建华. 平行平板间填充球粒填料的传热特性试验研究[J]. 工程热物理学报, 1999, 20(2): 220-223.
Wang B X, Zhang Z J, Du J H. The experiment investigation of heat transfer characteristics through channel bounded by parallel plates filled with sphere padding [J]. Journal of Engineering Thermophysics, 1999, 20(2): 220-223. (in Chinese)
[7] 杨卫卫, 何雅玲, 黄竞, 等. 多孔材料强化管内对流换热的数值研究[J]. 工程热物理学报, 2007, 28(1): 104-106.
Yang W W, He Y L, Huang J, et al. Numerical simulation of heat transfer enhancement in porous medium filled pip[J]. Journal of Engineering Thermophysics, 2007, 28(1): 104-106. (in Chinese)
[8] Mohamad A A. Heat transfer enhancements in heat exchangers fitted with porous media Part Ⅰ: constant wall temperature[J]. International Journal of Thermal Sciences, 2003, 42(4): 385-395.
[9] Zhang J M, Sutton W H, Lai F C. Enhancement of heat transfer using porous convection-to-radiation converter for laminar flow in a circular duct[J]. International Journal of Heat and Mass Transfer, 1996, 40(1): 39-48.
[10] Jiang P X, Li M, Lu T J, et al. Experimental research on convection heat transfer in sintered porous plate channels[J]. International Journal of Heat and Mass Transfer, 2004, 47(10/11): 2085-2096.
[11] Jiang P X, Wang Z, Ren Z P, et al. Experimental research of fluid flow and convection heat transfer in plate channels filled with glass or metallic particles
[J]. Experimental Thermal and Fluid Science, 1999, 20(1): 45-54.
[12] Gray W G. Thermodynamics and constitutive theory for multiphase porous-media flow considering internal geometric constraints[J]. Advances in Water Resources, 1999, 22(5): 521-547.
[13] Bortolozzi R A, Deiber J A. Comparison between two-and one-field models for natural convection in porous media[J]. Chemical Engineering Science, 2001, 56(1): 157-172.
[14] Jiang P X, Si G S, Li M, et al. Experimental and numerical investigation of forced convection heat transfer of air in nonsintered porous media [J]. Experimental Thermal and Fluid Science, 2004, 28(6): 545-555.
[15] Izadpanah M R, Müller-Steinhagen H, Jamialahmadi M. Experimental and theoretical studies of convective heat transfer in a cylindrical porous medium[J]. International Journal of Heat and Fluid Flow, 1998, 19(6): 629-635.
[16] Fergui O, Bertin H, Quintard M. Transient aqueous foam flow in porous media: experiments and modeling[J]. Journal of Petroleum Science and Engineering, 1998, 20(1/2): 9-29.
[17] Jamialahmadi M, Müller-Steinhagen H, Izadpanah M R. Pressure drop, gas hold-up and heat transfer during single and two-phase flow through porous media[J]. International Journal of Heat and Fluid Flow, 2005, 26(1): 156-172.
[18] Bijeljic B, Mantle M D, Sederman A J, et al. Slow flow across macroscopically semi-circular fibre lattices and a free-flow region of variable width—visualisation by magnetic resonance imaging[J]. Chemical Engineering Science, 2004, 59(10): 2089-2103.
PDF(1155 KB)

4263

Accesses

0

Citation

Detail

段落导航
相关文章

/