基于G-H分布的copula-SMR方法

田凯;杨永愉*

北京化工大学学报(自然科学版) ›› 2012, Vol. 39 ›› Issue (1) : 122-127.

PDF(965 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年7月27日 星期日
Email Alert  RSS
PDF(965 KB)
北京化工大学学报(自然科学版) ›› 2012, Vol. 39 ›› Issue (1) : 122-127.
管理与数理科学

基于G-H分布的copula-SMR方法

  • 田凯;杨永愉*
作者信息 +

Analysis of copula-spectral measure of risk based on G-H distribution

  • TIAN Kai;YANG YongYu
Author information +
文章历史 +

摘要

将阿基米德copula应用于谱风险度量(SMR),提出了一种新的风险度量方法(copula-SMR方法)。选取G-H分布对边缘分布进行建模,采用极大似然估计对给定的阿基米德copula进行参数估计,选择能更好拟合实际数据的copula函数,运用二次规划方法,计算相应的谱风险值,确定了在不同期望收益率下最优投资组合。

Abstract

The Archimedean copula theory has been employed in the calculation of spectral risk measure (SMR), and a new method of risk measurement (copula-SMR) has been put forward. The G-H distribution was used to construct the marginal distribution and estimate the parameters of the given Archimedean copula by the maximum likelihood method, and finally a better copula was chosen in order to fit the dependence of the actual data. A quadratic programming method was chosen to compute the SMR and determine the optimal portfolio coefficient for different expected rates of return.

引用本文

导出引用
田凯;杨永愉*. 基于G-H分布的copula-SMR方法[J]. 北京化工大学学报(自然科学版), 2012, 39(1): 122-127
TIAN Kai;YANG YongYu. Analysis of copula-spectral measure of risk based on G-H distribution[J]. Journal of Beijing University of Chemical Technology, 2012, 39(1): 122-127

参考文献

[1]Chen F Y, Liao S L. Modelling VaR for foreign-asset portfolios in continuous time [J]. Economic Modelling, 2009, 26: 234-240.
[2]Alexander S, Cloeman T F, Li Y. Minimizing CVaR for a portfolio of derivatives [J]. Journal of Banking & Finance, 2006, 30: 583-605.
[3]Acerbi C, Tasche D.On the coherence of expected shortfall[J]. Journal of Banking & Finance, 2002, 26: 1487-1503.
[4]Adam A, Houkari M, Laurent J P. Spectral risk measures and portfolio selection [J]. Journal of Banking & Finance, 2008, 32: 1870-1882.
[5]Bollerslev T, Chou R Y, Kroner K F. ARCH modeling in finance: A review of the theory and empirical evidence [J]. Journal of Econometrics, 1992, 52: 5-59.
[6]Cotter J, Dowd K. Extreme spectral risk measures: An application to futures clearinghouse margin requirements [J]. Journal of Banking & Finance, 2006, 30(12): 3469-3485.
[7]Schweizer B, Sklar A. Probabilistic metric spaces[M]. New York: Elsevier, 1983.
[8]He X B, Gong P. Measuring the copuled risks: A copulabased CvaR model [J]. Journal of Computational and Applied Mathematics, 2009, 223:1066-1080.
[9]Hoaglin D C, Mosteller F.Exploring Data Tables, Trends, and Shapes [M]. New York: Wiley, 1985: 461-513.
[10]潘志斌.金融市场风险度量[D]. 上海:上海社会科学院, 2008.
Pan Z B. Risk measurement of financial market [D]. Shanghai: Shanghai Academy of Social Science, 2008. (in Chinese)
[11]Acerbi C, Spectral measures of risk: Coherent representation of subjective risk aversion [J]. Journal of Banking & Finance,2002,26: 1505-1518.
[12]Huang J J, Lee K J, Liang H, et al, Estimating value at risk of portfolio by conditional copula-GARCH method [J]. Insurance: Mathematics and Economics, 2009, 45: 315-324.
[13]Cheng G, Li P, Shi P. A new algorithm based on copulas for VaR valuation with empirical calculations [J]. Theoretical Computer Science, 2007, 378: 190-197.
PDF(965 KB)

3253

Accesses

0

Citation

Detail

段落导航
相关文章

/