气流场中石蜡颗粒表面的剪切脱水

王中校1;王亭杰2*;郭奋1;金涌2

北京化工大学学报(自然科学版) ›› 2011, Vol. 38 ›› Issue (5) : 1-05.

PDF(950 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年7月27日 星期日
Email Alert  RSS
PDF(950 KB)
北京化工大学学报(自然科学版) ›› 2011, Vol. 38 ›› Issue (5) : 1-05.
化学与化学工程

气流场中石蜡颗粒表面的剪切脱水

  • 王中校;王亭杰*;郭奋;金涌
作者信息 +

Water removal from wax particle surface by gas shear flow

  • WANG ZhongXiao1;WANG TingJie 2;GUO Fen1;JIN Yong2
Author information +
文章历史 +

摘要

针对水冷塔石蜡造粒工艺中石蜡颗粒表面脱水,提出用气流剪切脱除颗粒表面残留水的方法,设计了气流剪切脱水的设备结构,并实验验证了该过程脱水的有效性。分析了颗粒表面的脱水过程,由于水滴在石蜡表面不润湿,在表面张力作用下,以球帽型液滴形式存在,在气流的剪切作用下,水滴从石蜡表面脱离。实验结果表明,在3.5m/s气速下,10s的停留时间就能实现石蜡颗粒表面完全脱水,脱水速率与颗粒表面相对气速有关,随操作气速增大,脱水速率加快。剪切脱水过程中的流化空气不需要加热,能耗低。

Abstract

A novel method for removing water droplets on a wax particle surface by gas shear flow has been developed for a spherical wax granulation process in a water-cooling tower. An apparatus for water removal from the wax particle surfaces was designed, and the feasibility and effectiveness of the process were verified by experiment. The water droplet removal process was analyzed. A water droplet on a wax surface forms a spherical cap due to interfacial forces, gravity and the hydrophobic surface of the wax. The droplet was blown off the surface by gas flow. The experiments showed that a water droplet on the wax particle surface was removed effectively in ten seconds at a gas velocity of 3.5m/s. The relative gas velocity determines the droplet removal rate and the droplet removal rate increases as the gas velocity increases. The process does not require heated air, leading to low energy consumption.

引用本文

导出引用
王中校1;王亭杰2*;郭奋1;金涌2. 气流场中石蜡颗粒表面的剪切脱水[J]. 北京化工大学学报(自然科学版), 2011, 38(5): 1-05
WANG ZhongXiao1;WANG TingJie 2;GUO Fen1;JIN Yong2. Water removal from wax particle surface by gas shear flow[J]. Journal of Beijing University of Chemical Technology, 2011, 38(5): 1-05

参考文献

[1]任世雄, 卢涛, 党沙沙, 等. 聚丙烯水下切粒模板温度场的数值模拟[J]. 机械工程学报, 2009, 45(7): 274-277. Ren S X, Lu T, Dang S S, et al. Numercial simulation of temperature field of die for polypropylene pelletizing under water[J]. Journal of Mechanical Engineering, 2009, 45(7): 274-277. (in Chinese)
[2]Fang J Y, Xi Y Z, Wang T J, et al. A novel granulation technology for producing spherical wax particles[J]. Chem Eng Technol, 2004, 27(9): 1039-1047. 
[3]Milne A J B, Amirfazli A. Drop shedding by shear flow for hydrophilic to superhydrophobic surfaces[J]. Langmuir, 2009, 25(24): 14155-14164.
[4]闵敬春, 彭晓峰, 王晓东. 竖壁上液滴的脱落直径[J]. 应用基础与工程科学学报, 2002, 10(1): 57-62. 
Min J C, Peng X F, Wang X D. Departure diameter of a drop on a vertical plate[J]. Journal of Basic Science and Engineering, 2002, 10(1): 57-62. (in Chines)
[5]王晓东, 彭晓峰, 张欣欣. 水平壁面上液滴吹离的临界风速[J]. 应用基础与工程科学学报, 2006, 14(3): 403-410. 
Wang X D, Peng X F, Zhang X X. Investigation on critical airflow velocity about departure of droplet from horizontal wall[J]. Journal of Basic Science and Engineering, 2006,14(3): 403-410. (in Chinese)
[6]Erbil H Y, McHale G, Newton M I. Drop evaporation on solid surfaces: constant contact angle mode[J]. Langmuir, 2002, 18(7): 2636-2641. 
[7]Mate A, Masbernat O, Gourdon C. Detachment of a drop from an internal wall in a pulsed liquidliquid column [J]. Chem Eng Sci, 2000, 55(11): 2073-2088.
[8]Antonini C, Carmona F J, Pierce E, et al. General methodology for evaluating the adhesion force of drops and bubbles on solid surfaces[J]. Langmuir, 2009, 25(11): 6153-6154. 
[9]Schleizer A D, Bonnecaze R T. Displacement of a two-dimensional immiscible droplet adhering to a wall in shear and pressure-driven flows[J]. J Fluid Mech, 1999, 383: 29-54.
[10]ElSherbini A I, Jacobi A M. Liquid drops on vertical and inclined surfaces I. An experimental study of drop geometry[J]. Journal of Colloid and Interface Science, 2004, 273(2): 556-565. 
[11]Seevaratnam G K, Ding H, Michel O, et al. Laminar flow deformation of a droplet adhering to a wall in a channel[J]. Chem Eng Sci, 2010, 65(16): 4523-4534.

PDF(950 KB)

2486

Accesses

0

Citation

Detail

段落导航
相关文章

/