流动电势法对L-谷氨酸水溶液结晶过程的表征

王建1;马卫兴1;刘玮炜1;许兴友2,3;陆路德2;杨绪杰2

北京化工大学学报(自然科学版) ›› 2010, Vol. 37 ›› Issue (3) : 41-45.

PDF(1036 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年5月7日 星期三
Email Alert  RSS
PDF(1036 KB)
北京化工大学学报(自然科学版) ›› 2010, Vol. 37 ›› Issue (3) : 41-45.
化学与化学工程

流动电势法对L-谷氨酸水溶液结晶过程的表征

  • 王建;马卫兴;刘玮炜;许兴友,;陆路德;杨绪杰
作者信息 +

Characterization of the crystallization of L-glutamic acid by streaming potential measurements

  • WANG Jian1;MA WeiXing1;LIU WeiWei1;XU XingYou2,3;LU LuDe2;YANG XuJie2
Author information +
文章历史 +

摘要

以流动电势法研究L-谷氨酸饱和水溶液的降温结晶过程,考察了溶液起始温度和酸度对结晶过程中流动电势(ν)结晶器温度(t)曲线的影响。结果表明:起始温度为15℃的L-谷氨酸饱和溶液在较高酸度条件(pH<3.5)下成核明显,25℃下等电点附近有成核能力,30℃下在不同酸度下均显示一定的成核能力;pH=2.5、pH=3.5的L-谷氨酸饱和溶液,只在起始温度15℃下可形成晶核;pH=3.0的饱和溶液在起始温度25和30℃下可有效地形成晶核。运用生长基元理论对此结晶过程进行了分析。

Abstract

The streaming potentials of saturated solutions of L-glutamic acid (L-Glu) were determined in order to characterize the crystallization occurring during a cooling process. The influence of varying the initial temperature and solution acidity on the ν-t curves were investigated. The results showed that: saturated solutions of L-Glu with relatively high acidity (pH<3.5) had a distinct nucleating ability at an initial temperature of 15℃; solutions with an initial temperature of 25℃ showed competitive nucleating ability at or near the acidity of the isoelectric point; solutions with an initial temperature of 30℃ showed a certain nucleating ability which depended on the acidity. Saturated solutions of L-Glu with pH=2.5 and pH=3.5 could form crystal nuclei only when the initial temperature was 15℃; a solution with acidity pH=3.0 could efficiently form crystal nuclei at initial temperatures of 25℃ and 30℃. Growth unit theory can be employed to explain this crystallizing process.

引用本文

导出引用
王建1;马卫兴1;刘玮炜1;许兴友2,3;陆路德2;杨绪杰2. 流动电势法对L-谷氨酸水溶液结晶过程的表征[J]. 北京化工大学学报(自然科学版), 2010, 37(3): 41-45
WANG Jian1;MA WeiXing1;LIU WeiWei1;XU XingYou2,3;LU LuDe2;YANG XuJie2. Characterization of the crystallization of L-glutamic acid by streaming potential measurements[J]. Journal of Beijing University of Chemical Technology, 2010, 37(3): 41-45

参考文献

[1]洛拉·克基拉. 有机酸及中性氨基酸的形成非对映体盐结晶拆分法的研究[D]. 上海:华东理工大学,2003.
Kokila L. Research on the formation of organic acids and neutral amino acids diastereomeric salts crystal chiral separation[D]. Shanghai: East China University of Science and Technology, 2003. (in Chinese)
[2]SchllJ, Vicum L, Müller M, et al. Precipitation of L-Glutamic acid: determination of nucleation kinetics[J]. Chem Eng Technol, 2006, 29(2): 257-264.
[3]王正发. 氨基酸与核苷酸的溶解度计算公式[J]. 发酵科技通讯, 2002,31(1):36-37.
Wang Z F. Calculation formula of solubility for amino acid and nucleotide acid[J]. Fajiao Keji Tongxun, 2002,31(1):36-37. (in Chinese)
[4]冯容保. 氨基酸的结晶工艺[J]. 发酵科技通讯,2002, 31(4): 11-12.
Feng R B. Crystallization of amino acid[J]. Faxiao Keji Tongxun, 2002, 31(4):
11-12. (in Chinese)
[5]于淑娟, 罗文波, 高文宏, 等. 谷氨酸结晶新工艺[J]. 齐齐哈尔大学学报,2001, 17(13): 5-8.
Yu S J, Luo W B, Gao W H, et al. New crystallization processing of glutamic acid[J]. Journal of Qiqihar University, 2001, 17(13): 5-8. (in Chinese)
[6]张缨. 有机物系溶液结晶过程中形态学控制研究[D]. 天津:天津大学,2005.
Zhang Y. Study on the morphology control of solution crystallization processes for organic compound[D]. Tianjin: Tianjin University, 2005. (in Chinese)
[7]GoeG. L-Glutamic acid crystals grown from saturated aqueous solutions at 25℃ and 37℃[J]. Microchimica Acta, 1976, 66(1/2): 119-134.
[8]MaC Y, Wang X Z, Roberts K J. Multi-dimensional population balance modeling of the growth of rod-like L-glutamic acid crystals using growth rates
estimated from inprocess imaging[J]. Advanced Powder Technology, 2007, 18(6): 707-723.
[9]deAnda J C, Wang X Z, Lai X, et al. Classifying organic crystals via inprocess image analysis and the use of monitoring charts to follow
polymorphic and morphological changes[J]. Journal of Process Control,2005(15): 785-797.
[10]Kitamura M. Polymorphism in the crystallization of L-glutamic acid[J]. J Cryst Growth, 1989,96: 541-546.
[11]Liu J C, Lu J F, Li Y G. Study on the activity coefficients and the solubilities of amino acids in water by the perturbation theory[J]. Fluid Phase Equilibria, 1998, 142: 67-82.
[12]李晓华. 食品应用化学[M]. 北京:高等教育出版社,2002.Li X H. Food applied chemistry[M]. Beijing: Higher Education Press, 2002. (in Chinese)
[13]WangJ, Xu X Y, Lu L D, et al. Crystallization of binary carboxylic
acids characterized with streaming potential measurement[J]. Surface and Interface Analysis, 2007, 39(6): 482-486.
[14]陈敬中. 现代晶体化学理论与方法[M]. 北京:高等教育出版社, 2001.
Chen J Z. Modern crystal chemistrytheories and technique[M]. Beijing: Higher Education Press, 2002. (in Chinese)
[15]仲维卓, 郑燕青, 施尔畏, 等. 晶体生长溶液、熔体结构与生长基元[J]. 人工晶体学报,2002,31(5): 425-431.
Zhong W Z, Zheng Y Q, Shi E W, et al. Structures of solutions, melts of crystal
growth and growth units[J]. Journal of synthetic crystals, 2002, 31(5): 425-431. (in Chinese)
PDF(1036 KB)

2916

Accesses

0

Citation

Detail

段落导航
相关文章

/