针对沸石膜中典型的Langmuir吸附以及强、弱受限扩散两种情形,利用MaxwellStefan(MS)模型描述膜内扩散,建立了计及界面非平衡条件下吸、脱附阻力的单组分气体渗透膜模型,得到表征界面阻力的解析解。针对强受限和弱受限扩散分子(CF4和CH4)在MFI沸石膜中的扩散,讨论了影响界面阻力的主要因素。结果表明:界面阻力分率随膜厚的增加而减小;对于弱受限的CH4分子,进料端和通透端压力的改变不会影响界面阻力分率的改变;对于强受限的CF4分子,界面阻力分率受操作压力的影响较大。本文方法可方便地讨论界面阻力的影响,从而指导沸石膜材料合成以及膜组件的设计。
Abstract
Single component permeation of weakly confined and strongly confined diffusing m olecules through zeolite membranes with typical Langmuir adsorption isotherms ha s been described by a MaxwellStefan (MS) mass transfer model that takes into a ccount interfacial mass transfer resistances at the two sides of nonequilibriu m membrane interfaces, and analytical solutions for permeation fluxes were obtaine d. The main factors influencing the ratios of interfacial resistance to intracry stalline resistance have been discussed for both weakly confined diffusing molec ules (CH4) and strongly confined diffusing molecules (CF4). It was found tha t: the ratios of interfacial resistance to intracrystalline resistance decreas e with an increase in membrane thickness; for the weakly confined CH4, the ratios are not significantly influenced by the pressures on either the feed or permea tion sides; for the strongly confined CF4, the ratios are very sensitive to ch anges in pressure on both sides. The method presented here can be used for a qui ck test of whether the interfacial resistance is dominant or not, facilitating t he synthesis and design of such zeolite membranes and separation modules.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]van de Graaf J M, Kapteijn F, Moulijn J A. Diffusivities of light Alkanes in a silicalite1 membrane Layer[J]. Microporous and Mesoporous Mate rials, 2000, 35/36(1/2/3): 267-281.
[2]Zhu W, Kapteijn F, Moulijn J A. Separation modeling of linear and branche d C6 alkane permeation through silicalite1 membranes[J]. Separation and Puri fication Technology, 2003, 32(1/2/3): 223-230.
[3]Krishna R, Baur R. Modeling issues in zeolite based separation process[J ]. Separation and Purification Technology, 2003, 33(3): 213-254.
[4]Zhang Y K, Kocherginsky N M. Time lag for transmembrane transport without interface equilibrium[J]. Journal of Membrane Science, 2003, 225(1/2): 105-11 4.
[5]Caravella A, Barbieri G, Drioli E. Modelling and simulation of hydrogen permeation through supported Pdalloy membranes with a multicomponent approach[J]. Chemical Engineering Science, 2008, 63(4):2149-2160.
[6]Newsom D A, Sholl D S. Atomically detailed simulation of surface resistan ces to transport of CH4, CF4, and C2H6 through silicalite membranes[J] .Microporous and Mesoporous Materials, 2008, 107(3):286-295.
[7]Skoulidas A I, Sholl D S, Krishna R. Correlation effects in diffusion of CH4/CF4 mixtures in MFI zeolite: a study linking MD simulations with the max wellstefan formulation[J]. Langmuir, 2003, 19(19): 7977-7988.
[8]Song L J, Sun Z L, Duan L H, et al. Adsorption and diffusion properties o f hydrocarbons in zeolites[J]. Microporous and Mesoporous Materials, 2007, 104 (1/2/3): 115-128.
[9]德博尔 J H. 吸附的动力学特性[M]. 柳正辉,王果庭,杨孔章,译. 北京: 科学出版社,1964. de Boer J H. The dynamical character of adsorption[M]. Liu Z H, Wang G T, Yang K Z, translate. Beijing: Science Press, 1964. (in Chinese)
[10]Skoulidas A I, Sholl D S. Transport Diffusivities of CH4, CF4, He, Ne, Ar, Xe and SF6 in Silicalite from Atomistic Simulations[J]. Journ al of Physical Chemistry B, 2002, 106(19): 5058-5067.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}