基于不确定orness测度约束的MEOWA算子权向量模型

徐建荣;周荣喜*

北京化工大学学报(自然科学版) ›› 2008, Vol. 35 ›› Issue (3) : 100-103.

PDF(872 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年7月10日 星期四
Email Alert  RSS
PDF(872 KB)
北京化工大学学报(自然科学版) ›› 2008, Vol. 35 ›› Issue (3) : 100-103.
管理与数理科学

基于不确定orness测度约束的MEOWA算子权向量模型

  • 徐建荣;周荣喜*
作者信息 +

A model of weight variables for obtaining an MEOWA operator based on the constraint of interval orness measure

  • XU JianRong;ZOU RongXi
Author information +
文章历史 +

摘要

考虑orness测度水平为不确定型的情况下如何求解MEOWA算子权向量问题。结果表明:不确定型orness测度下求解MEOWA算子权向量可以转化为相应orness测度区间端点或内点时的MEOWA权向量的求解,并对两者的关系进行分析。将该方法应用于某化工建设项目环境影响技术评估,算例表明该方法的可行性和有效性。

Abstract

A method for solving the weight variable of the maximal entropy ordered weighted averaging (MEOWA) operator is proposed, based on the uncertainty of orness measure. Our analysis shows that the problem can be solved by transforming it into a problem of the weight variable of the MEOWA under the corresponding endpoints or interior point of interval of orness measure; the relationship between these two approaches is discussed and analyzed. Finally, the new method is used in a technical assessment of the environmental effects of chemical plant construction, which highlights the feasibility and effectiveness of the method.

引用本文

导出引用
徐建荣;周荣喜*. 基于不确定orness测度约束的MEOWA算子权向量模型[J]. 北京化工大学学报(自然科学版), 2008, 35(3): 100-103
XU JianRong;ZOU RongXi. A model of weight variables for obtaining an MEOWA operator based on the constraint of interval orness measure[J]. Journal of Beijing University of Chemical Technology, 2008, 35(3): 100-103

参考文献

[1] Yager R R. On ordered weighted averaging aggregation operators in multicriteria decision making[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1988, 18(1): 183-188. 
[2] O'Hagan M. Aggregating template or rule antecedents in real-time exp
ert systems with fuzzy set logic[C]∥Proc 22nd Annual IEEE Asilomar Conf On Signals, Systems and Computers, CA:Pacific Grove, 1988: 681-689. 
[3] Filev D, Yager R R. Analytic properties of maximum entropy OWA operat
ors[J], Information Sciences, 1995, 85(1): 11-27. 
[4] Fuller R, Majlender P. An analytic approach for obtaining maximal ent
ropy OWA operator weights[J]. Fuzzy Set and Systems, 2001, 124(1): 53-57. 
[5] Yager R R. Entropy measures under similarity relations[J]. Internat
ional Journal of General Systems, 1992, 20: 341-358.
[6] Engemann K J, Filev D P, Yager R R. Modeling decision making using im
mediate probabilities[J]. International Journal of General Systems, 1996, 24(3): 281-294.
[7] 尤天慧, 樊治平, 俞竹超. 不确定性多属性决策中确定属性熵权的一种方法[J].
东北大学学报: 自然科学版, 2004, 25(6): 598-601.
[8] 马永红, 周荣喜, 李振光. 基于离差最大化的决策者权重的确定方法[J]. 北京化
工大学学报: 自然科学版, 2007, 34(2): 177-180.
[9] Xu Zeshui. An overview of methods for determining OWA weights[J]. I
nternational Journal of Intelligent Systems, 2005, 20(8): 843-865.

PDF(872 KB)

2981

Accesses

0

Citation

Detail

段落导航
相关文章

/