
一类非线性差分方程解的渐近性质
Asymptotic properties of the solutions of a class of nonlinear difference equations
[1] Camouzis E, Ladas G. Dynamics of third order rational difference equations with open problems and conjectures[M]. Boca Raton:Chapman and Hall/CRC Press, 2007.
[2] Amleh A M, Camouzis E, Ladas G. On the boundedness character of rational equations, part 2[J]. J Diff Eqns Appl, 2006, 12(6): 637-650.
[3] Camouzis E, Ladas G, Palladino F, et al. On the boundedness character of rational equations, part 1[J]. J Diff Eqns Appl, 2006, 12(5): 503-523.
[4] Ladas G. Open problems and conjectures[J]. J Diff Eqns Appl, 2004, 10(11): 1041-1047.
[5] Ladas G. Open problems and conjectures[J]. J Diff Eqns Appl, 2004, 10(9): 869-879.
[6] Kulenovic M R S, Ladas G, Overdeep C B. Open problems and conjectures[J]. J Diff Eqns Appl, 2003, 9(11): 1053-1056.
[7] Kocic V L, Ladas G. Global behavior of nonlinear difference equations of higher order with applications[M]. Boston: Kluwer Academic Publishers, 1993.
[8] El-Metwally H, Grove E A, Ladas G. A global convergence result with applications to periodic solutions[J]. Journal of Mathematical Analysis and Applications, 2000, 245(1): 161-170.
[9] Camouzis E, Ladas G, Rodrigues I W, et al. The rational recursive sequence xn+1=βx2n/1+x2n-1[J]. Computers Math Appl, 1994, 28(1-3): 37-43.
[10] 李万同. 非线性时滞差分方程的持续生存和渐近性质[J]. 应用数学和力学, 2003, 24(11): 1126-1132.
/
〈 |
|
〉 |