一类非线性差分方程解的渐近性质

徐勤志;吴开谡*

北京化工大学学报(自然科学版) ›› 2008, Vol. 35 ›› Issue (2) : 105-109.

PDF(915 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年7月13日 星期日
Email Alert  RSS
PDF(915 KB)
北京化工大学学报(自然科学版) ›› 2008, Vol. 35 ›› Issue (2) : 105-109.
管理与数理科学

一类非线性差分方程解的渐近性质

  • 徐勤志;吴开谡*
作者信息 +

Asymptotic properties of the solutions of a class of nonlinear difference equations

  • XU QinZhi;WU KaiSu
Author information +
文章历史 +

摘要

研究了一类非线性差分方程解的渐近性质,给出了这类差分方程解的持续生存和渐近性质的充分条件,所得到的结果推广了前人的相关工作。

Abstract

In this paper, the asymptotic behavior of the solutions of a class of nonlinear difference equations is described and some sufficient conditions for permanence and asymptotic behavior are obtained. The results are generalized and compared with earlier work in the literature.

引用本文

导出引用
徐勤志;吴开谡*. 一类非线性差分方程解的渐近性质[J]. 北京化工大学学报(自然科学版), 2008, 35(2): 105-109
XU QinZhi;WU KaiSu. Asymptotic properties of the solutions of a class of nonlinear difference equations[J]. Journal of Beijing University of Chemical Technology, 2008, 35(2): 105-109

参考文献

[1] Camouzis E, Ladas G. Dynamics of third order rational difference equations with open problems and conjectures[M]. Boca Raton:Chapman and Hall/CRC Press, 2007. 
[2] Amleh A M, Camouzis E, Ladas G. On the boundedness character of rational equations, part 2[J]. J Diff Eqns Appl, 2006, 12(6): 637-650.
[3] Camouzis E, Ladas G, Palladino F, et al. On the boundedness cha
racter of rational equations, part 1[J]. J Diff Eqns Appl, 2006, 12(5): 503-523.
[4] Ladas G. Open problems and conjectures[J]. J Diff Eqns Appl, 2004, 10(11): 1041-1047. 
[5] Ladas G. Open problems and conjectures[J]. J Diff Eqns Appl, 2004, 10(9): 869-879. 
[6] Kulenovic M R S, Ladas G, Overdeep C B. Open problems and conjectures[J]. J Diff Eqns Appl, 2003, 9(11): 1053-1056. 
[7] Kocic V L, Ladas G. Global behavior of nonlinear difference equ
ations of higher order with applications[M]. Boston: Kluwer Academic Publishers, 1993.
[8] El-Metwally H, Grove E A, Ladas G. A global convergence result with applications to periodic solutions[J]. Journal of Mathematical Analysis and Applications, 2000, 245(1): 161-170. 
[9] Camouzis E, Ladas G, Rodrigues I W, et al. The rational recursive sequence xn+1=βx2n/1+x2n-1[J]. C
omputers Math Appl, 1994, 28(1-3): 37-43.
[10] 李万同. 非线性时滞差分方程的持续生存和渐近性质[J]. 应用数学
和力学, 2003, 24(11): 1126-1132.

PDF(915 KB)

4667

Accesses

0

Citation

Detail

段落导航
相关文章

/