采用密度泛函理论(DFT)的B3PW91方法,在Lanl2dz、6-31G(d,p)、6-311++G(d,p)基组水平上对具有不同点群对称性的Zn(OH)4-6及Zn(H2O)2+6系列配合物的几何构型进行了全优化并在B3PW91/6/311++G(d,p)水平上对前线轨道、振动频率等性质进行了分析。Zn(OH)4-6系列配合物中具有D3d点群对称性的构型最稳定,Zn(H2O)2+6系列配合物中具有Th点群对称性的构型最稳定。从体系能量角度考虑,Zn(OH)4-6·6H2O体系比Zn(H2O)2+6·6OH-体系稳定。通过振动分析得到的O—H键吸收峰在3816和1638cm-1位置处,Zn—O键的吸收峰在541和391cm-1位置处,与文献报道的实验数值相符,证明所采用的理论方法及基组适用于研究Zn(OH)64-和Zn(H2O)2+6系列配合物的电子结构。
Abstract
The geometries of a series of Zn(OH)4-6 and Zn(H2O)2+6 complexes with different point group symmetries have been optimized by using density functional theory (DFT) at the B3PW91/Lanl2dz, B3PW91/6-31G(d,p) and B3PW91/6-311++G(d,p) levels. The frontier molecular orbitals and IR spectra of the complexes were calculated at the B3PW91/6-311++ G(d,p) level. The calculations show that for Zn(OH)4-6 the complex with D3d symmetry has the minimum energy,whilst for Zn(H2O)2+6 the complex with Th symmetry has the lowest energy. According to the total energies, the system [Zn(OH)4-6·6H2O] is more stable than the system [Zn(H2O)2+6·6OH-]. The O—H bonds are calculated to give strong absorption bands at 3816 and 1638cm-1, whilst the Zn—O bands have strong absorption bands at 541 and 391cm-1; these are close to the experimental data. This demonstrates that the theoretical methods and basis sets employed are appropriate for the study of the electronic structures of Zn(OH)4-6 and Zn(H2O)2+6 as well as related complexes.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘媛. 层状双金属氢氧化物的合成与应用[J]. 化工时刊, 2005,19(12):59-62.
[2] 倪哲明, 潘国祥, 王力耕, 等. 二元类水滑石层板组成、结构与性能的理论研究[J]. 无机化学学报, 2006, 22(1): 91-95.
[3] EβMANN R, MOCKENHAUPT C. Influence of coordination on N—H…X- hydrogen bonds. Part Ⅱ. Zn(NH3)2Br2 and Ni(NH3)2X2(X is Cl- and Br-)[J]. Spectrochim Acta: Part A, 1996,52: 1897-1901.
[4] CINI R,MUSAEV D G,MARZILLI L G,et al. Molecular orbital study of
complexes of zinc(Ⅱ) with imidazole and water molecules[J]. J Mol Struct(The
ochem), 1997, 392: 55-64.
[5] TSUZUKI S, LTHI H P. Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: Assessing the PW91 model[J]. J Chem Phys, 2001, 114: 3949-3957.
[6] FRISCH M J, TRUCKS G W, SCHLEGEL H, et al. Gaussian 03, Revision B.04[CP]. Pittsburgh PA: Gaussian, Inc, 2003.
[7] BRIDGEWATER B M, PARKIN G. A. Zinc hydroxide complex of relevance to 5-aminolevulinate dehydratase: The synthesis, structure and reactivity of the tris(2-mercapto-1-phenylimidazolyl) hydroborato complex [TmPh] ZnOH[J]. Inorg Chem Commun, 2001, 4: 126-129.
[8] HERNANDEZMORENO M J, ULIBARRI M A, RENDON J L, et al. IR characteristics of hydrotalicite-like compounds[J]. Phys Chem Miner, 1985, 12: 34-38.
[9] SABER O, TAGAYA H. Preparation and intercalation reactions of Zn-Sn LDH and Zn-Al-Sn LDH[J]. J Porous Mater, 2003, 10: 83-91.
[10] 何建廷, 庄惠照, 薛成山,等. PLD法生长硅基ZnO薄膜的特性[J]. 电子元件与
材料, 2005, 24(5): 24-26.
[11] 付洪瑞, 刘东志, 王士钊. 硬脂酸修饰PbO、Zn(OH)2纳米粒子的摩擦学性能研究
[J]. 润滑与密封, 2006, 12: 155-157.
[12] ISHIKAWA T, MATSUMOTO K, KANDORI K, et al. Synthesis of layered zinc hydroxide chlorides in the presence of Al(Ⅲ)[J]. J Solid State Chem, 2006, 179:1110-1118.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}