
基于无先导卡尔曼滤波的RBFN训练算法研究
Training radial basis neural networks with the unscented Kalman filter
[1]SCHWENKER F, KESTLER H A, PALM G, et al. Three learning phase for radial basis funciton networks[J]. Neural Networks, 2001, 14(4-5): 439-458.
[2]SARIMVEIS H, DOGANIS P, ALEXANDRIDIS A, et al. A classification technique based on radial basis function neural networks[J]. Advances in Engineering Software, 2006,37(4): 218-221.
[3]KARAYIANNI N. Reformulated radial basis neural networks trained by gradient descent[J]. Neural Networks, 1999, 3(5):657-671.
[4]PIOVOSO M, PHILLIP A, LAPLANTE L, et al. Kalman filter recipes for realtime image processing[J]. RealTime Imaging, 2003, 9(6):433-439.
[5]SIMON D. Kalman filtering for fuzzy discrete time dynamic systems[J]. Applied Soft Computing Journal, 2003, 3(3): 191-207.
[6]BOJE E, PETRICK M. Application of the extended Kalman filter to a lysine hydrochlorination process[J]. Control Engineering Practice, 2000, 8(3): 291-297.
[7]JULIER S, HLMANN J. A new approach for filtering nonlinear systems[C]. Piscataway, NJ, USA :IEEE Press, 1995: 1628-1632.
[8]LI Peihua, ZHANG Tianwen, MA Bo. Unscented kalman filter for visual curve tracking[J]. Image and Vision Computing, 2004, 22(2): 157-164.
[9]SIMON D. Training radial basis neural networks with the extended kalman filter[J]. Neurocomputing, 2002, 48(1-4): 455-475.
[10]IULIAN B C. RBF networks training using a dual extended [JP2]kalman filter[J]. Neurocomputing, 2002, 48(1-[JP]4): 609-622.
[11]ROMANENKO A, CASTRO JOSE A A M. The unscented filter as an alternative to the EKF for nonlinear state estimation: a simulation case study[J]. Computers and Chemical Engineering, 2004, 28(3): 347-355.
/
〈 |
|
〉 |