
紫外光引发的玉米淀粉在软材料表面的改性
UV-induced surface modification of soft polymer
以玉米淀粉作为改性剂、二苯甲酮(BP)做光引发剂对聚合物材料表面进行紫外光偶合反应,用X-射线电子能谱(XPS)、水接触角(CA)和扫描电子显微镜(SEM)对改性后的聚合物表面进行了结构和性能表征。结果表明,玉米淀粉被固定到CPP膜表面的最佳条件为0.03g/L玉米淀粉、1.0g/L BP、12.0mW/cm2光强和8min光照时间。玉米淀粉改性后的CPP膜的接触角可由105.0°变为66.3°。随着玉米淀粉的初始浓度的增加,改性CPP膜的表面水接触角先随之下降然后略有上升;延长光照时间和增加光强均会使玉米淀粉改性的CPP膜的表面水接触角随之下降。玉米淀粉改性后的CPP膜的表面形成了一定规则形状的颗粒结构。
Corn starch has been used for the surface modification of a cast polypropylene (CPP) polymer surface using benzophenone (BP) as photoinitiator. The modified polymer surfaces were characterized by Xray photoelectron spectroscopy(XPS), water contact angle (CA) and scanning electron microscopy (SEM). It was found that the optimal conditions for preparing corn starch modified CPP film are concentrations of 0.03g/L for corn starch and 1.0g/L for BP, with a photointensity of 12.0mW/cm2 for a time of 8 min. The contact angle of the CPP surface was reduced from 105.0° to a minimum of 66.3° after modification with corn starch. The contact angle was found to reach a minimum value at intermediate starchconcentrations and after prolonged irradiation times and high photointensities. Spontaneous formation of small granules of corn starch on the modified CPP surface were observed by SEM.
[1]MA Huimin, DAVIS R H, BOWMAN C N. A novel sequential photoind
uced living graft polymerization[J]. Macromolecules, 2000, 33(2): 331-335.
[2]KATOA K, UCHIDA E, KANG Entang, et al. Polymer surface with graft cha
ins[J]. Prog Polym Sci, 2003, 28: 209-259.
[3]YANG Wantai, R?NBY B. Bulk surface photografting process and its applications Ⅱ: Principal factors affec~ting surface photografting[J]. J Appl Polym Sci, 1996, 62: 545-555.
[4]YANG Wantai, R?NBY B. Radical living graft polymerization on the
surface of polymeric materials[J]. Macromolecules, 1996, 29(9): 3308-3310.
[5]LEE H J, MATSUDA T. Surface photograft polymeri~zation on segmented po
lyurethane using the iniferter technique[J]. J Biomed Mater Res, 1999, 47: 564-567.
[6]ALDENHOFF Y B J, KOOLE L H. Studies on a new strategy for surface mod
ification of polymeric biomaterials [J]. J Biomed Mater Res, 1995, 29: 917-928.[7]LABSK Y J. Binding of d-mannose to poly(2-hydro xyethyl methacrylate) hydrogels by azo coupling[J]. Biomaterials, 2003, 24: 4031-4036.
[8]KONNO T, HASUDA H, YOSHIHIRO I, et al. Photoimmobilization of a phospholipid polymer for surface modification[J]. Biomaterials, 2005, 26: 1381-1388.
[9]YANG Peng, SUN Yufeng, YANG Wantai, et al. Synthesis and inhibition p
erformance of a polymersupported inhibitor[J]. J Polym Sci Part A: Polym Chem, 2004, 42: 4074-4083.
[10]YANG Wantai, R?NBY B. Photoinitiation performance of some ketones in the LDPEacrylic acid surface photografting system[J]. Eur Polym J,1999, 35: 1557-1568.
[11]刘莲英,杨万泰. 紫外光引发反相乳液聚合研究[D]. 北京:北京化工大学, 2003.
[12]RJEB A, LETARTE S, TAJOUNTE L, et al. Polypropylene natural aging st
udied by X-ray photoelectron spectroscopy[J]. J Electron Spectrosc Relat Phenom, 2000, 107: 221-230.
[13]HLNE A, SONIA M B, MOHAMED N B, et al. Surface chemical modification of waxy maize starch nanocrystals[J]. Langmuir, 2005, 21(6): 2425-2433.
/
〈 |
|
〉 |