炭气凝胶微球的制备及在锂离子电池负极材料中的应用

夏三宇 ;陈晓红 ;宋怀河

北京化工大学学报(自然科学版) ›› 2006, Vol. 33 ›› Issue (2) : 46-49.

PDF(359 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年2月19日 星期三
Email Alert  RSS
PDF(359 KB)
北京化工大学学报(自然科学版) ›› 2006, Vol. 33 ›› Issue (2) : 46-49.
研究论文

炭气凝胶微球的制备及在锂离子电池负极材料中的应用

  • 夏三宇 ;陈晓红 ;宋怀河
作者信息 +

Preparation of a microspherical carbon aerogel and its application as anode material for lithium ion batteries

  • XIA San-yu ;CHEN Xiao-hang ;SONG Huai-he
Author information +
文章历史 +

摘要

以间苯二酚和甲醛为原料,在催化剂和表面活性剂的作用下经溶胶-凝胶、超临界干燥、炭化等过程合成一种新型的炭气凝胶微球。采
用扫描电镜(SEM)、X-射线衍射(XRD)、低温氮吸附(BET)和充放电测试等表征了炭气凝胶微球微观形貌、结构和电化学性能。结果表明:炭气
凝胶微球具有纳米网络结构(孔径集中分布在3.5nm左右),微球直径≤40μm,比表面积为555m2/g。电化学性能表现出很大的首次不可逆容量
损失,这主要与材料大的比表面积有关。但在首次循环后,具有良好的循环性能,循环20次后可逆充电容量为281mAh/g,循环效率达到100%

Abstract

A micro-spherical carbon aerogel was synthesized by a series of steps such as involving a sol-gel process,
supercritical drying and carbonization using resorcinol and formaldehyde as reagents in the presence of catalyst and
surfactant. The micro-morphology, structure and electrochemical performance of the micro-spherical carbon aerogel were
characterized by SEM, XRD, BET and charge-discharge measurements. It was found that the diameter of the micro-spherical
carbon aerogel is below 40μm with the pore size distributed around 3.5nm and with a specific area of 555m2/g. As a
consequence of the high surface area, a large initial capacity loss was observed. However, after the first cycle, the anode
material showed excellent cyclability with a reversible charge capacity of 281mAh/g after the 20th cycle with the cycle
efficiency approaching 100%.

引用本文

导出引用
夏三宇 ;陈晓红 ;宋怀河. 炭气凝胶微球的制备及在锂离子电池负极材料中的应用[J]. 北京化工大学学报(自然科学版), 2006, 33(2): 46-49
XIA San-yu ;CHEN Xiao-hang ;SONG Huai-he. Preparation of a microspherical carbon aerogel and its application as anode material for lithium ion batteries[J]. Journal of Beijing University of Chemical Technology, 2006, 33(2): 46-49

参考文献

[1] Endo M, Kim C, Nishimura K, et al. Recent development of carbon materials for Li ion batteries[J]. Carbon, 2000, 38:183-197.
[2] Zaghib K, Kinoshita K. Advanced materials for negative electrodes in
Lipolymer batteries[J]. Journal of Power Sources, 2004, 125: 214-220.
[3] Tokumitsu K, Mabuchi A, Fujimoto H, et al. Electrochemical insertion of lithium into carbon synthesized from condensed aromatics[J]. J Electroc
hem Soc, 1996, 143 (7):2235-2239.
[4] Yata S, Kanoshita H, Komori M, et al. Structure and properties of
deeply Li-doped polyacenic semiconducor materials beyong C6Li stage[J]. Sy
nth Met, 1994, 62:153-158.
[5] Matsumura Y, Wang S, Kasuh T. The dependence of reversible capacity of lithium ion rechargeable batteries on the crystal structure of carbon electrodes[J]. Synth Met, 1995, 71: 1755-1756.
[6] Zheng T, Liu Y, Fuller E W, et al. Lithium insertion in high capacity
carbonaceous materials[J]. J Electrochem Soc, 1995, 142(7):2581-2590.
[7] Pekala R W, Farmer J C, Alviso C T, et al. Carbon aerogels for electr
ochemical applications[J]. Journal of NonCrystalline Solids, 1998, 225:74-80
.
[8] Horikawa T, Hayashi J, Muroyama K. Size control and characterization
of spherical carbon aerogel particles from resorcinolformaldehyde resin[J]. Carbon, 2004, 42:169-175.
[9] Frackowiak E, Béguin F. Electrochemical storage of energy in carbon
nanotubes and nanostructured carbons[J]. Carbon, 2002, 40:1775-1787.
[10] 李宝华, 张睿, 吕永根, 等. 炭气凝胶及其在锂离子电池中的应用[J]. 电池工业, 2004, 9(2):81-85.
[11] Mi C H, Cao G S, Zhao X B. A non-GIC mechanism of lithium storage in chemical etched MWNTs[J]. J Electroanalytical Chemistry 2004, 562:217-221.

PDF(359 KB)

5615

Accesses

0

Citation

Detail

段落导航
相关文章

/