蒺藜果实中 C21 甾体类化合物结构解析

刘 颖 陈 光 胡高飞 喻长远 ** (北京化工大学: 1. 生命科学与技术学院; 2. 理学院, 北京 100029)

摘 要:采用柱层析等分离方法,从蒺藜 (*Tribulus terrestris* L.)果实乙醇提取液的正丁醇萃取层中,分离到两种化合物。通过核磁共振、酸水解、薄层检测等方法鉴定了它们的结构。这两种化合物都是 C_{21} 甾体类化合物,分别为 3-O-β-lycotetraosyl 3β-hydroxy-5α-pregn-16-en-20-one (I)和 3β-hydroxy-5α-pregn-16 (17) en-20-one-3-O-β-D-xylopyranosyl(1→2)-[β-D-xylopyranosyl-(1→3)]-β-D-glucopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1→2)]-β-D-galactopyranoside (II)。其中化合物 I 在蒺藜科首次发现,化合物 II 在蒺藜中首次发现。

关键词: 蒺藜; C21 甾体类; 核磁共振; 酸水解

中图分类号: R284.1

引言

蒺藜 (Tribulus terrestris L.) 属蒺藜科蒺藜属植 物,其果实为中国传统中药,具有平肝解郁、活血祛 风、明目、止痒的功效。蒺藜中含有甾体皂苷类、黄 酮类、生物碱、挥发油氨基酸类、萜类、脂肪酸等成 分[1]。C,, 甾体化合物是1类含有21个碳原子的甾 体衍生物。此类化合物多具有抗炎,抗肿瘤等生物 活性,主要分布在玄参科、夹竹桃科、萝藦科等[2], 但在蒺藜科十分少见。至今为止,只有 Abdel-Hameed 等[3]在 Tribulus macropterus 中发现此类化合 物。本文首次从蒺藜中分离得到两种 C,, 甾体类, 化 合物 I (47 mg)、化合物 II(29 mg), 经鉴定分别为 3- $O-\beta$ -lycotetraosyl 3β -hydroxy- 5α -pregn-16-en-20-one 和 3β -hydroxy- 5α -pregn- 16(17) en-20-one-3-0- β -D $xylopyranosyl(1\rightarrow 2) - [\beta-D-xylopyranosyl-(1\rightarrow 3)]$ β-D-glucopyranosyl-(1 \rightarrow 4)- $\lceil \alpha$ -L-rhamnopyranosyl-(1→2)]-β-D-galactopyranoside。这两种化合物的糖 基部分信号重叠严重,对该信号的归属缺少比较直 接的依据。Fujiwara 等[4]仅仅从化学位移和以往积 累的经验来推断化合物I的结构。本文通过对化合 物 I 重水交换和 1D-TOCSY (核磁共振一维相关实

验)的测定为糖基信号准确归属提供了必要的理论依据。

1 实验部分

1.1 材料与仪器

蒺藜果实,2006年5月购于河北省,经鉴定为 蒺藜的干燥果实。

AV600 型超导液体核磁共振仪,德国 Bruker; RE-52AA 型旋转蒸发仪,上海亚荣生化仪器厂;HH-S2 型电热恒温水浴锅,山西金燕电热仪器厂。

ZCX-II型柱层析硅胶,200~300目,青岛海洋化工有限公司;GF254型薄层层析硅胶,分析纯,青岛海洋化工有限公司;ODS-A,12 nm,S-50 μ m,AA12S50,日本 YMC;羟丙酰基交联葡聚糖凝胶,Sephadex LH-20,GE healthcare Bio-scienses AB,北京慧德易科技有限责任公司。

1.2 化合物的提取和分离

干燥蒺藜果实 20 kg,用 70% 乙醇加热回流提取 2 次,得药液。依次按照极性的从小到大用石油醚、氯仿、乙酸乙酯、正丁醇对药液进行萃取,分别回收溶剂,挥干得各层萃取物^[5]。正丁醇萃取物浸膏为 207 g,该浸膏用硅胶柱进行分离,萃取物和硅胶(质量比 1:1) 拌样,采用湿法上柱分离,氯仿-甲醇(体积比 50:1、30:1、20:1、10:1、5:1、2:1、1:1) 梯度洗脱得粗品。氯仿-甲醇(1:1) 洗脱得到的粗品部分再用硅胶、ODS-A 和 Sephadex LH-20 等分离柱进行细分,得化合物 I (47 mg) 和化合物 II (29 mg)。

E-mail: yucy@ mail. buct. edu. cn

收稿日期: 2009 - 12 - 17

第一作者: 女,1982 年生,硕士生

^{*} 通讯联系人

1.3 酸水解和薄层检测

分别取化合物 I 和化合物 II 各 3 mg, 溶于 2 mol/L 盐酸-甲醇(体积比 4:1)5 mL 中,于 90 ℃加热回流 6 h。冷却后,将混合物用去离子水定容到 20 mL,再用 20 mL 的二氯甲烷萃取 3 次,得水层^[6]。浓缩干燥后,溶于甲醇中,薄层检测($V_{\text{氯仿}}:V_{\text{甲醇}}:V_{\text{录}}=6:4:1$),与标准糖对照。

2 结果与讨论

2.1 化合物 I 的结构鉴定

2.1.1 C₂₁ 甾体母核结构鉴定

化合物 I:白色粉末(氯仿-甲醇)。ESI-MS: 957 [M + Na] + , 分子量 934。结合 ¹H-NMR 和 ¹³ C-NMR,确定其分子式为 C44 H70 O21。 通过 DEPT 谱 (无畸变极化转移增强)判断 C 信号的类型。在 DEPT135 中,发现 4 个碳信号(δ13.1、δ17.1、δ28.0、 δ32.9)可能为伯碳信号,但在 DEPT90 中,δ32.9 为 正信号,所以其为叔碳信号。蒺藜中多含甾体皂苷 类化合物,典型的甾体皂苷一般含有4个甲基信号, 且每个甲基都连有次甲基,在1H-NMR 中表现为双 重峰,因此推测该化合物不属于甾体皂苷类。在对 碳信号归类中发现, δ 197.2 为羰基碳信号, δ 156.3 为季碳信号, δ145.6 为叔碳信号, 并且推测 δ156.3 和 δ 145.6 为双键信号。同时在 H-NMR 中, δ 6.58 (1H,s,J=3Hz) 为烯氢信号,在 HSQC 中与 δ145.6 相关,应为其上的烯氢,而该烯烃在 HMBC 与 δ197.2 具有远程相关,提示该分子中具有双键与羰 基共轭结构。此外, δ2. 22 (3H, s) 与 δ27.4 存在 HSQC 相关,为 CH。信号,在 HMBC 中又与羰基相 关,说明分子中具有双键和羰基共轭结构。图1中 同时显示了 8 个双峰分别为: H1 (δ4.20, d, J = 3.9) H2 (δ 4.41, d, J = 3.6) H3 (δ 4.49, d, J = 3.9) H4 (δ 4.71, d, J = 3.9) H5 (δ 5.03, d, J =2.7) H6 (δ 5.09, d, J = 2.4) H7 (δ 5.26, d, J =3.3)、 $H8(\delta 5.66, d, J = 2.7)$ 。通过重水交换(图 2),除了 H1 (δ 4.20,d,J = 3.9)、H2(δ 4.41,d,J = 3. 6) H3 (δ 4. 49, d, J = 3.9) H4 (δ 4. 71, d, J =3.9),其余的氢信号消失,消失的氢信号均为活泼 氢信号,剩下的4个双峰信号为4个糖基端信号,在 HMBC 谱图中找出其相关的碳信号,分别是 H1 同 δ101. 4、H2 同 δ103. 8、H3 同 δ103. 8、H4 同 δ102. 9 相关,且该4个碳信号为叔碳信号,不存在缩酮结 构。综合以上信息,推测该化合物为 C, 甾体类化合 物,表1为化合物甾体母核结构碳信号类型。

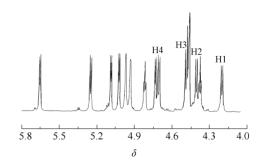
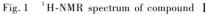



图 1 化合物 I 的氢谱图

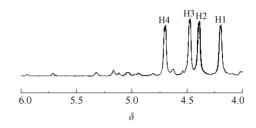


图 2 化合物 I 的重水交换谱图 Fig. 2 D₂O exchange of compound I

表 1 化合物 I 苷元的 13 C-NMR 和 DEPT Table 1 13 C-NMR chemical shifts and DEPT of the aglycone part of compound I

C 序号	δ	DEPT	C 序号	δ	DEPT
1	36. 7	CH ₂	12	36. 7	CH ₂
2	30. 7	CH_2	13	47. 4	C
3	77. 1	СН	14	55.7	СН
4	33. 1	CH_2	15	32. 9	CH_2
5	45.7	СН	16	145. 6	СН
6	29. 7	CH_2	17	156. 3	С
7	33. 1	CH_2	18	17. 1	CH_3
8	36. 1	СН	19	13. 1	CH_3
9	57. 2	СН	20	197. 2	С
10	36. 7	CH_2	21	28.0	CH_3
11	22. 2	CH_2			

2.1.2 糖基类型及连接方式的鉴定

采用 1D-TOCSY 来推断其糖基连接顺序。分别选择 H1(δ 4. 21, d, J = 3. 9)、H2(δ 4. 41, d, J = 3. 6)、H3(δ 4. 49, d, J = 3. 9)、H4(δ 4. 71, d, J = 3. 9)为激发核。由图 3 可看出 H1 与质子(δ 3. 20、 δ 3. 32、 δ 3. 78、 δ 3. 87)相关; H2 同质子(δ 3. 11、 δ 3. 23、 δ 3. 36、 δ 3. 57、 δ 3. 60)相关; H3 同质子(δ 3. 04、

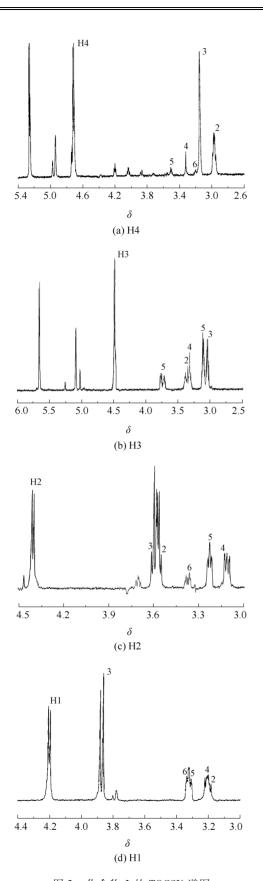
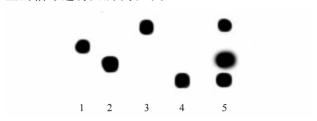



图 3 化合物 I 的 TOCSY 谱图 Fig. 3 TOCSY spectra of compound I

83. 12、83. 30、83. 35、83. 71、83. 76) 相关; H4 同质子 (82. 96、83. 14、83. 32、83. 51) 相关。综合酸水解薄层检测的结果(图 4),判断这 4 个糖基团分别为 1 个半乳糖、1 个鼠李糖、2 个葡萄糖基,而且均为 β 构型。从 HSQC 谱图中找出其相关碳,对 4 个糖基上的信号进行归属(表 2)。

1-鼠李糖; 2-葡萄糖; 3-木糖; 4-半乳糖; 5-化合物 I
 图 4 化合物 I 薄层层析图
 Fig. 4 TLC of compound I

表 2 化合物 I 糖基的 H-NMR 和 Table 2 H-NMR chemical shifts and Table 2 Shifts of the sugar parts of compound I

位置	糖类型 -		δ
		Н	C
1	Gle	4. 71	102. 9
2	Gle	2. 96	74. 8
3	Gle	3. 14	77. 4
4	Gle	3.32	74. 3
5	Gle	3. 51	77
6	Gle	3. 21	61.8
1	Xyl	4. 49	103.8
2	Xyl	3. 35	74
3	Xyl	3.04	76. 9
4	Xyl	3.3	69. 9
5	Xyl	3.76	66. 3
5	Xyl	3. 12	77
1	Gle	4. 41	103.8
2	Gle	3. 57	79.8
3	Gle	3.6	85.5
4	Glc	3. 11	69. 9
5	Glc	3. 23	76. 5
6	Glc	3. 36	61.3
1	Gal	4. 21	101.4
2	Gal	3. 18	72
3	Gal	3. 87	74
4	Gal	3. 2	76. 4
5	Gal	3. 31	74
6	Gal	3.32	59. 9

在 HMBC 中, H1 同 C3(δ77.1) 存在着远程相

关,且同时 C3(δ 77.1)在 HSQC 中与 H(δ 4.21)相 关,因此推断该处为半乳糖与 C_{21} 母核的连接位点。在 HMBC 中, H2(δ 4.41)同半乳糖的第 4 位 C(δ 76.4)相关,推断该内侧葡萄糖基同半乳糖的第 4 位 C 相连; H3(δ 4.71)与内侧葡萄糖第 2 位 C(δ 79.8)、H4(δ 4.49)与内侧葡萄糖第 3 位 C(δ 85.5)存在 BC 相关,从而推断出 4 个糖基的连接位点。综合以上信息,可以确定该化合物是 C_{21} 甾体类化合物。且该化合物在蒺藜科中首次发现。结构如图 5 所示。

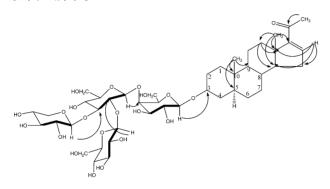
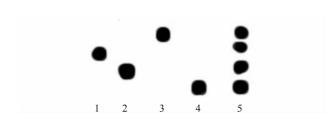



图 5 化合物 I 结构示意图 Fig. 5 The structure of compound I

2.2 化合物Ⅱ的结构鉴定

化合物 Π :白色粉末(氯仿-甲醇),测定该化合物的 1 H-NMR 和 13 C-NMR,对照化合物 Π 的谱图,发现其也有一个明显的 C_{21} 甾体母核信号,推断其为 C_{21} 甾体类化合物。酸水解后薄层检测(图 6),判断 其所连糖基分别 1 个半乳糖、2 个鼠李糖、1 个葡萄糖、1 个木糖基团。 13 C-NMR 数据和文献 [4] 中化合物 5 的基本一致,见表 3 ~ 4,确定该化合物为 3 β-hydroxy-5 α -pregn-16(17) en-20-one-3-0- β -D-xylopyranosyl($1 \rightarrow 2$)- $[\beta$ -D-xylopyranosyl-($1 \rightarrow 3$)]- β -D-glucopyranosyl-($1 \rightarrow 4$)- $[\alpha$ -L-rhamnopyranosyl-($1 \rightarrow 2$)]- β -D-galactopyranoside,且在蒺藜中首次发现,结构如图 7 所示。

1-鼠李糖;2-葡萄糖;3-木糖;4-半乳糖;5-化合物 II 图 6 化合物 II 薄层层析图 Fig. 6 TLC of compound II

表 3 化合物 II 和化合物 5 的苷元部分¹³ C-NMR 数据
Table 3 ¹³ C-NMR chemical shifts of the aglycone
part of compounds II and V

碳序号 -	δ		中占口	δ		
	化合物Ⅱ	化合物 5[4]	碳序号	化合物Ⅱ	化合物 5[4]	
1	37. 8	38. 2	12	36. 1	36. 4	
2	30. 7	30. 6	13	47. 4	47. 6	
3	78. 5	78. 9	14	57. 2	57. 9	
4	33. 1	33. 3	15	32. 9	32. 5	
5	45.7	46. 4	16	146	147. 2	
6	29. 7	29. 9	17	156. 2	156.7	
7	33. 1	33. 2	18	17	16. 4	
8	35. 2	35.3	19	13. 2	12. 3	
9	55.8	56. 5	20	197. 6	199. 5	
10	36. 8	37. 1	21	28	27. 2	
11	22. 1	22. 2				

表 4 化合物 II 和化合物 5 的糖基部分 ¹³ C-NMR 数据
Table 4 ¹³ C-NMR chemical shifts of the sugar
part of compounds II and V

₩ ±	δ		kri: ++·	δ	
糖基 类型	化合	化合	糖基 类型	化合	化合
	物Ⅱ	物 5[4]		物Ⅱ	物 5[4]
3-O-Gal	100. 9	100.8		102. 9	102. 1
	77.4	77. 1	Gal (1-2) Rha	73. 2	72. 5
	76. 7	76		73.5	72. 5
	82. 2	82		74.8	73. 2
	74.8	74. 1		70. 3	69.7
	61.4	60. 9		19.3	17. 9
	106. 1	105. 5		105.8	105. 4
	82. 2	81.9		75.8	75.4
Gal (1-4) Glc	88.5	88.4	Glc(1-2) Xyl	78.5	78.3
Gar(1-4) Gic	71.1	70. 5		71.6	71
	77.5	77. 6		68. 1	67. 2
	63.4	63.3			
Glc(1-3) Xyl	106. 4	105. 4			
	75. 9	75.4			
	78.5	78. 5			
	71.6	71. 1			
	68.3	67. 3			

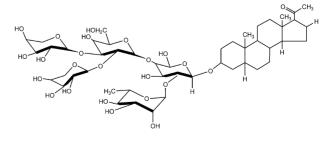


图 7 化合物 II 的结构图 Fig. 7 The structure of compound II

参考文献:

- [1] 徐雅娟, 黄小蕾, 解生旭, 等. 蒺藜果化学成分的分离和鉴定[J]. 高等学校化学学报, 2007, 28(3): 484-486
 - Xu Y J, Huang X L, Xie S X, et al. Isolation and Iden tification of a New Furosteroidal Saponin from Fruits of *Tribulus Terrestris* L. [J]. Chemical Journal of Chinese Universities, 2007, 28(3): 484-486. (in Chinese)
- [2] 章华, 冯锋, 檀爱民, 等. C₂₁ 甾体类化合物及其核磁 共振谱学综述[J]. 海峡药学, 2008, 20(2): 1-5. Zhang H, Feng F, Tan A M, et al. Advanced study of C₂₁ steroidal glycosides and their ¹³ C-NMR data [J]. Strait Pharmaceutical Journal, 2008, 20(2): 1-5. (in Chinese)
- [3] Abdel-Hameed E S, El-Nahas H A, Ei-Wakil E A, et

- al. Cytotoxic Cholestane and Pregnane Glycosides from *Tribulus macropterus* [J]. Z Naturforsch, 2007, 62: 319 325.
- [4] Fujiwara Y, Yoshizaki M, Matsushita S, et al. A New Tomato Pregnane Glycoside from the Overripe Fruits [J]. Chem Pharm Bull, 2005, 53(5): 584-585.
- [5] 王如意,陈光,喻长远. 白蒺藜果实的化学成分研究 [J]. 北京化工大学学报: 自然科学版, 2009, 36(增刊): 79-82.

 Wang R Y, Chen G, Yu C Y. Chemical constituents of Tribulus terrestris L. [J]. Journal of Beijing University of Chemical Technology: Natural Science, 2009, 36(suppl): 79-82. (in Chinese)
- [6] Su L, Chen G, Feng S G, et al. Steroidal saponins from Tribulus terrestris [J]. Steroids, 2009, 74: 399 – 403.

C₂₁ -steroid compound analysis of *Tribulus terrestris* fruits

LIU Ying¹ CHEN Guang¹ HU GaoFei² YU ChangYuan¹

(1. College of Life Science and Technology; 2. School of Science, Beijing University of Chemical Technology, Beijing 100029, China)

Abstract: Two compounds have been isolated by column chromatography from the n-butanol extracts of *Tribulus terrestris* fruits. The chemical structures of these two compounds were characterized by NMR spectroscopy, acid hydrolysis and TLC. Both are C_{21} steroids, namely 3-O-β-lycotetraosyl 3β-hydroxy-5α-pregn-16-en-20-one (I) and 3β-hydroxy-5α-pregn-16(17) en-20-one-3-O-β-D- xylopyranosyl(1 \rightarrow 2)-[β-D-xylopyranosyl-(1 \rightarrow 3)]-β-D-glucopyranosyl-(1 \rightarrow 4)-[α-L-rhamnopyranosyl-(1 \rightarrow 2)]-β-D-galactopyranosyl (II). This is the first time that compound I has been isolated from the family Zygophyllaceae, and the first time that compound II has been reported in *Tribulus terrestris*.

Key words: Tribulus terrestris; C₂₁-steroid; NMR; acid hydrolysis