2006年

低温离子交换法合成镍酸锂及其电化学性能

孙艳芝¹ 潘军青² 万平玉^{2*} 许淳淳¹ 刘小光¹ (1. 北京化工大学 材料科学与工程学院; 2. 北京化工大学 理学院, 北京 100029)

摘 要:采用低温离子交换反应法在空气气氛下合成了锂离子电池正极材料——镍酸锂。系统研究了低温离子交换法制备镍酸锂的工艺条件,如合成温度、反应时间、原料摩尔比和不同原料等对合成镍酸锂晶体的影响。用 XRD和 SEM等测试手段,对镍酸锂样品进行了结构表征。通过充放电测试,研究了镍酸锂电极的电化学性能,结果表明,镍酸锂具有高达 142 mAh/g 的首次放电容量和良好的循环寿命。

关键词: 锂离子电池; 镍酸锂; 离子交换反应; 放电容量

中图分类号: O611.4

引言

锂离子电池的正负极材料是嵌锂化合物,它由 于具有电池电压高,比能量大,循环寿命长,自放电 系数小及无记忆效应等优点,自问世以来就备受研 究者的关注[1]。目前商品化的锂离子电池正极材 料主要是LiCoO2,但由于钴的毒性、资源稀少和价 格高昂[2],迫使人们寻找结构和性能与之相似的替 代材料。因为镍酸锂(LiNiO2)与LiCoO2具有相同 的层状结构,且具有容量高、循环性能好和对环境友 好等显著特点,被认为是最有希望被开发的锂离子 电池正极材料之一。迄今为止已有关于 LiNiO₂ 的 研究报道,涉及的主要是LiOH或LiNO3和+2价 态的镍化物(如 Ni(NO₃)₂和 Ni(OH)₂等)在高温氧 气氛中(700~850 下)的固相氧化反应[3-5]。由于 这类反应条件比较苛刻,通常难以得到具有理想结 构的层状 LiNiO₂。这是因为生成的 LiNiO₂ 在高温 条件下不稳定,容易分解为 $Li_{1-x}Ni_{1+x}O_2$,使得过 量的镍离子处于 NiO₂ 平面之间的锂层中,妨碍了 锂离子的扩散,导致了该材料的电化学活性下降。 因而目前 LiNiO₂ 的制备技术仍有待改进,有关如何 合成电化学性能优良的 LiNiO₂ 成为当前的研究热 点[6-8]。相对现有的高温固相合成镍酸锂来说,离 子交换法作为一种新型的合成方法,它借助 NiOOH

收稿日期: 2006-02-11

第一作者: 女,1977年生,博士生

*通讯联系人

E-mail: pywan @mail. buct. edu. cn

自身已有的层状结构和三价镍的条件,可以在空气条件和较低的温度下发生离子交换来合成镍酸锂,具有反应条件温和可控等优点,逐渐引起人们的兴趣^[9]。Palacin等^[10]报道了通过离子交换法合成LiNiO₂的研究,放电容量达到了72 mAh/g,这与镍酸锂的理论容量274 mAh/g 还有较大的差距。

本文旨在提高镍酸锂的实际容量,以自制的高纯度 -NiOOH $^{[11]}$ 为前驱体,通过和氢氧化锂之间的离子交换反应,在 80 和 $450 \sim 550$ 的低温空气气氛条件下,制备出较高性能的 $LiNiO_2$ 材料。利用 XRD 和 SEM 等测试手段对反应得到的产物进行了形貌和结构表征,通过恒流充放电实验研究了该镍酸锂材料的电化学性能。

1 实验部分

1.1 试剂

氢氧化锂,分析纯,上海精细化工科技有限公司。硝酸锂,分析纯,上海恒信化学试剂有限公司。 氢氧化镍,长沙矿冶研究院湘潭电源材料分部。高 纯膨胀石墨,平度市华东石墨加工厂。聚四氟乙烯 (PTFE)乳液,常州聚四氟乙烯研究所。锂片,北京 有色金属研究总院。

1.2 样品的制备与结构表征

将自制的球形 -NiOOH 和氢氧化锂粉末按一定的摩尔比混合,在电动搅拌机中充分搅拌分散,得到黑色的混合物,然后逐渐加入少量去离子水,再充分研磨直至变为黑色粘稠物。将上述物体置于反应釜中于恒温箱80 下恒温12h,然后再真空干燥除去水分,得到前驱体。将该前驱体重新研磨,压块,

在空气气氛下于 $400 \sim 600$ 下继续反应 $5 \sim 25 \text{ h}$,然后自然冷却得到产物。

采用日本 Rigaku D/ $\max 2500 \text{VB2} + / \text{PC } X$ 射 线衍射仪分析合成 LiNiO_2 样品的晶体结构 ,测试时用 Cu 靶 ,管电压为 $40 \, \text{kV}$,电流为 $200 \, \text{mA}$,扫描速度为 $10 \, \text{9} \, \text{min}$,扫描角度范围 2 为 $10 \, \text{~90} \, \text{°}$ 。在英国 Cambridge S250M K3 型扫描电子显微镜 (SEM) 上观察样品形貌并拍照。

1.3 镍酸锂的电化学性能测试

将合成的 $LiNiO_2$ 样品、高纯膨胀石墨和聚四氟乙烯乳液以 82 12 6 (质量比) 的比例混合,在玛瑙研钵中充分研磨均匀后,在辊压机上碾压成薄膜,再将此薄膜以 10MPa 的压力压制在铝箔上,120 下真空干燥 20h 制得正极片。以金属锂片作负极,Celgard2300 为隔膜,1 mol/L 的 $LiPF_6$ 作电解液(溶剂由碳酸乙烯酯、碳酸二甲酯和碳酸甲乙酯组成,三者的体积比为 1 1 1),然后在充满高纯氩气气氛的真空手套箱内组装成实验电池。

实验电池的充放电测试采用武汉金诺电子有限公司生产的 LAND CT2100A 电池测试系统,测试软件为 Land3. 3 控制软件,由计算机同步采集数据,测试电流密度为 $0.5\,\mathrm{mA/\,cm^2}$,充放电电压的范围为 $2.5\,\mathrm{^c}\,4.3\,\mathrm{V}$ 。

2 结果与讨论

2.1 合成条件的优化

为了确定最佳的合成条件,本文在相同的测试条件(电压 $2.5 \sim 4.3 \text{ V}$,电流 0.5 mA/cm^2)下,以样品的首次放电比容量及充放电效率为综合衡量指标,确定低温离子交换法合成 LiNiO_2 的反应条件。

实验采用了 NiOOH-LiOH(A)、NiOOH-LiNO3 (B)和 Ni(OH)₂-LiOH(C)₃ 种不同原料,在 550 下反应 20 h 后得到镍酸锂样品。实验结果表明,A 给出了 142 mAh/g 的首次放电容量,而 B 和 C 仅给出了 56.8 mAh/g 的首次放电容量,而 B 和 C 仅给出了 56.8 mAh/g 和 22.5 mAh/g 的放电比容量。这说明 C 组 Ni (OH)₂-LiOH 混合物在 550 空气氛中因为原料中没有三价镍的存在,同时又较难在空气中氧化得到三价镍,因而不能通过离子交换反应来合成理想的镍酸锂。另外,由于反应产物中残留大量的 LiOH,从而导致了对铝集流体的显著腐蚀,仅给出了 20.1 %的充放电效率。而 B 组反应物虽然具有三价镍和 Li⁺ (LiNO₃),但是与日本 Fujita^[12]等

人报道的采用 LiNO₃ 得到较好的研究结果有所不同。本实验中只得到 93 mAh/g 的放电比容量,分析认为依靠单纯的 NiOOH中的质子和 LiNO₃ 的锂离子之间的离子交换反应很难彻底进行,离解出来的 NO₃ 离子可能和质子形成 HNO₃ 挥发掉,该反应很不彻底,因而很难得到较为纯净的镍酸锂。与Fujita^[12]等人的结果恰好相反,对 A 组样品以NiOOH和 LiOH 为原料,在同样的实验条件下得到了高性能的镍酸锂,通过上述的对比实验,我们认为,这一方面得益于 NiOOH 本身的质子交换特性,另一方面由于 LiOH 中的 OH 作用,使得 NiOOH和 Li⁺进行离子交换反应产生了 LiNiO₂ 和 H⁺,能迅速地和 LiOH 中的 OH 发生反应形成 H₂O 并挥发,从而促进离子交换反应向右进行。具体反应过程如下式:

$$NiOOH + Li^+ NiOOLi + H^+$$
 (1)

$$OH^{-} + H^{+} \longrightarrow H_{2}O$$
 (2)

所以,本文认为采用 NiOOH 和 Li^+ 进行离子交换制备镍酸锂的充分必要条件是必须同时存在 NiOOH Li^+ 和 OH^- 。

将 NiOOH 和 LiOH 按照摩尔比 1 1.05 充分混 合,在20MPa的高压下压制成片,然后在不同温度 下,焙烧5~20h,测试所得样品的首次充放电容量 和充放电效率(表 1)。由表 1 可知,随着反应温度 的提高,所得样品的充/放电容量增大,效率提高。 在 400 下反应的样品的放电容量为 77.3 mAh/g, 其充放电效率为 57.2%。随着温度升高到 550 时,首次放电容量增加到142.0 mAh/g,其充放电效 率高达 79.1%。但是 600 下焙烧所得样品的容量 却稍低于 550 的样品的容量,根据 NiOOH 的热稳 定特性,这可能是前驱体在600 的温度下开始明 显的分解,因而在还没有进行充分的离子交换的情 况下,已经有一小部分分解成 Ni())所致。综合上 述实验结果,认为在400~600 之间反应均可得到 LiNiO₂,升高温度不仅有利于离子交换反应的进行, 并且有利干提高产物的充放电效率,其中以550 的样品最好。从表 1 也可以看出,样品的放电容量 及效率随着反应时间的延长而增加,可见,增加反应 时间有利于离子交换的进行,得到高容量的镍酸锂。 当反应时间达到 20 h 后,镍酸锂产品容量的提高幅 度开始趋于平缓。

Table 1 Directs of calculate temperature and reaction time on electroenement characteristic of Directs							
T/	$Q_{ m in}^0\!\!/$ mAh ${ m g}^{-1}$	$Q_{ m out}^0/$ mAh \cdot g $^{-1}$	/ %	t/ h	$Q_{ m in}^0/$ mAh ${ m g}^{-1}$	$Q_{ m out}^0/$ mAh $\cdot { m g}^{-1}$	/ %
400	135.1	77.3	57.2	5	133.0	74.9	56.3
450	191.2	121.6	63.6	10	176.1	118.9	67.5
500	192.4	132.2	68.7	15	183.1	131.5	71.8
550	179.5	142.0	79.1	20	179.5	142.0	79.1
600	171.9	137.5	79.9	25	180.5	143.1	79.5

表 1 不同反应时间和温度对 LiNiO₂ 电化学性能的影响

Effects of calcined temperature and reaction time on electrochemical characteristic of LiNiO

171.9 $Q_{\rm in}^0$ 代表首次充电比容量, $Q_{\rm out}^0$ 为首次放电比容量

在实验中选择了 Li/Ni 摩尔比为 0.95 1、1.0 1、1.05 1、1.15 1 和 1.2 1 五个配比。图 1 为在 550 下.焙烧 20 h 所得样品的首次充放电容量与 锂、镍摩尔比的关系图。由图 1 知,随着反应物 Li/ Ni 摩尔比的增加 .过量的 LiOH 有利于离子交换的 进行,促进镍酸锂的形成,但过高的锂镍摩尔比将导 致氢氧化锂残留在产物中,这不仅降低了镍酸锂的 纯度,同时导致了对铝正极集流体的腐蚀,降低了镍 酸锂的放电容量与充电效率。

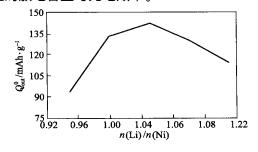


图 1 不同 Li/Ni 摩尔比的 LiNiO₂ 的首次放电容量

Fig. 1 Initial discharge capacity with different Li/Ni molar ratio

2.2 样品的结构表征

通过上述研究,初步得到了通过离子交换法制 备镍酸锂的最佳条件,图 2 为 Li/Ni 摩尔比为1.05 1.在 550 下焙烧 20 h 所得镍酸锂样品的 XRD 图。

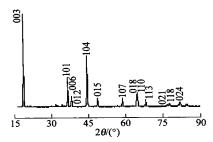


图 2 LiNiO₂ 的 XRD 图 Fig. 2 XRD pattern of LiNiO₂

从图中可以看出,低温离子交换法得到的镍酸锂样 品的在 003、101 和 104 等晶面出现强而尖锐的衍射 峰,对照LiNiO2的标准粉末衍射卡片,说明该产物 属于 -NaFeO2 晶系,且晶型发育比较完整。003 峰 与 104 峰的比值大小是衡量 LiNiO₂ 层状结构优劣 的一个重要指标,一般地,该比值(I_{003}/I_{104})大于 1.3, 而且该比值越大,表明层状结构越完整,二维 结构特性越好^[13]。从 XRD 衍射峰来看,550 煅烧 的 LiNiO₂ 样品的(003) 晶面的衍射峰强度比较大, 且 I₀₀₃/ I₁₀₄的比值大于 1.5,表明了该样品具有完 整的层状晶体结构,同时也说明了 LiNiO2 有较大的 层间距,这使得锂离子与镍氧层之间的作用力减弱, 有利于锂离子的脱嵌;另外,容纳锂离子的空间也相 应增大,导致其扩散阻力减弱,有利于锂离子在整个 晶体中有效嵌入和脱出,从而使材料的循环寿命和 放电容量有了进一步提高。

图 3 为 NiOOH 和在上述反应条件下所得 LiNiO₂ 样品的扫描电镜(SEM)图。由图 3 可看出, 反应后的 LiNiO2 样品的晶形较好, 粒度均匀适中 (10~20 µm)。反应产物大都保持了与前驱体 NiOOH相似的球形形貌。这说明离子交换反应前 后物质的形貌改变较少。

2.3 镍酸锂的电化学性能

图 4 为上述样品的充/放电曲线图。其中充电 过程分为两步,先恒流(电流为 0.5 mA/cm²)充电至 4.3V(vs.Li⁺/Li),再恒压充电1h。放电过程为 0.5 mA/cm² 的恒流放电。将充电电压设置在稍高 的 4.3 V .目的是较快地考察 LiNiO2 材料的耐过充 性能和循环稳定性。由图 4 看出,该材料表现出相 对稳定的循环性能,表现在整个充放电过程中镍酸 锂的充放电曲线平稳。从放电过程来看,样品表现 了较为平坦的充放电平台。样品的起始放电电压较 高,首次充放电容量分别达到 179.5 mAh/g 和

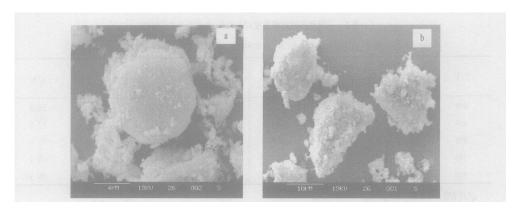


图 3 NiOOH(a)和LiNiO₂(b)的SEM图

Fig. 3 SEM photographs of NiOOH (a) and LiNiO₂ (b)

142.0 mAh/g, 充放电效率达到 79.1%。随着充放电过程的进行,样品的放电电压有所上升,放电容量在开始几周稍有增加,而充电电压稍有下降,充放电效率提高,本文认为该 $LiNiO_2$ 材料电化学的发挥有一个逐渐的活化过程,电极极化有所减弱。

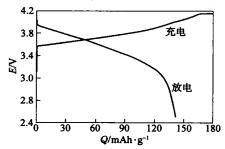


图 4 LiNiO₂ 的充放电曲线图

Fig. 4 Charge-discharge curve for LiNiO₂

图 5 为 550 反应所得样品在前 20 次的放电比容量(Q_{out})循环稳定特性图。从图中可知该样品

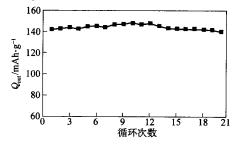


图 5 LiNiO₂ 的放电容量与循环次数的关系

Fig. 5 Plot of discharge capacity of LiNiO₂ vs. cycle number 在起始几次循环中出现一个材料的活化过程,即其初始可逆容量在前 10 次循环中逐步上升至 148.2 mAh/g,然后逐渐趋向平稳,再慢慢衰减。经过 20 次充放电循环后,放电容量仍然保持了 140.1 mAh/g 的容量,为最高放电容量的 94.5%,表明低温离子

反应法合成的 LiNiO₂ 具有良好的循环稳定性。通过离子交换法得到的层状镍酸锂具有良好的电化学性能,这可能得益于前驱体 NiOOH 本身具有较好的质子通道和循环特性,从而为锂离子的脱嵌过程提供了一个光滑的通道。

3 结论

- (1) 离子交换温度升高,反应时间延长,都有利于镍酸锂的形成和晶化,其中以 550 下反应 20 h最为理想。
- (2) 通过 NiOOH和 LiOH 之间的低温离子交换 反应,得到了具有层状结构的镍酸锂材料,其粉末颗 粒基本都成球形,粒径在 10~20 µm 之间。
- (3) 通过低温离子交换法得到的镍酸锂 ,具有良好的电化学性能 ,其首次放电容量达到了 142.0 mAh/ g ,10 次循环后容量达到 148.2 mAh/ g ,20 次后仍然保持了 140.1 mAh/ g 的容量 ,容量保持率为 94.5%。

参考文献

- [1] Whittingham M S. Lithium batteries and cathode materials[J]. Chem Rev , 2004 , 104(10) : 4271 4302.
- [2] 史延慧,郝万君,陈岗,等. 锂电池阴极材料 Li (Co_xAl_{1-x})O₂ 的溶胶凝胶法合成及表征[J]. 高等学校化学学报,2000,21(4):497-500.
- [3] Chebiam R V, Prado F, Manthiram A. Soft chemistry synthesis and characterization of layered $\text{Li}_{1-x} \, \text{Ni}_{1-y}$ $\text{Co}_y \text{O}_{2-} \, (0 \quad x \quad 1 \text{ and } 0 \quad y \quad 1)$ [J]. Chem Mater, 2001, 13(9): 2951 2957.
- [4] Pouillerie C, Croguennec L, Biensan P, et al. Synthesis and characterization of new LiNi_{1-y}Mg_yO₂ positive electrode materials for lithiumrion batteries [J]. J Elec-

- trochem Soc, 2000, 147(6): 2061 2069.
- [5] 钟辉,许惠,汪文成,等. 层状 $\text{Li}_{0.78}\text{Ni}_{0.3}\text{Mn}_{0.7}\text{O}_2$ 正极 材料的合成与性能研究[J]. 化学学报, 2003, 61(4): 510 513.
- [6] Lin S P, Fung K Z, Hon Y M, et al. Effect of Al addition on formation of layer-structured LiNiO₂ [J]. J Solid State Chem, 2002,167(1): 97 106.
- [7] Chowdari B V R, Rao G V S, Chow S Y. Cathodic behavior of (Co, Ti, Mg)-doped LiNiO₂ [J]. Solid State Ionics, 2001, 140: 55 62.
- [8] Yang H X, Dong Q F, Hu X H, et al. Preparation and characterization of LiNiO₂ synthesized from Ni(OH)₂ and LiOH·H₂O[J]. J Power Sources, 1999, 79(2):256-261.
- [9] Maruta J, Yasuda H, Yamachi M. Low-temperature synthesis of lithium nickelate positive active material from nickel hydroxide for lithium cells [J]. J Power Sources,

- 2000, 90(1): 89 94.
- [10] Palacin M R , Larcher D , Audemer A , et al. Low-temperature synthesis of LiNiO $_2$ [J]. J Electrochem Soc , 1997 , 144(12) : 4226 4236.
- [11] Pan J Q, Sun Y Z, Wan P Y, et al. Synthesis, characterization and electrochemical performance of battery grade NiOOH [J]. Electrochem Comm, 2005, 7(8): 857 862.
- [12] Amine K, Yasuda H, Fujita Y. New process for low temperature preparation of LiNi_{1-x}Co_xO₂ cathode material for lithium cells [J]. Ann Chim Sci Mat, 1998, 23 (1): 37 - 42.
- [13] Ohzuku T, Ueda A, Nagayama M. Electrochemistry and structural chemistry of $LiNiO_2(R_3m)$ for 4 volt secondary lithium cells [J]. Electrochem Soc, 1993, 140 (7): 1862 1870.

Low temperature preparation of LiNiO₂ cathode material and its electrochemical performance

SUN Yan-zhi¹ PAN Jun-qing² WAN Ping-yu² XU Chun-chun¹ L IU Xiao-guang¹

(1. College of Materials Science and Engineering , Beijing University of Chemical Technology ;

2. School of Science, Beijing University of Chemical Technology, Beijing 100029, China)

Abstract: LiNiO $_2$ cathode materials for lithium ion batteries were prepared by an ion-exchange reaction at low temperature in air. The effects of varying synthesis temperature, reaction time and precursor on the electrochemical performance of the LiNiO $_2$ products were studied. The LiNiO $_2$ samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties of the LiNiO $_2$ cathode materials were studied by charge-discharge testing. The results show that the LiNiO $_2$ material has an initial discharge capacity of 142.0 mAh/g and good cycling performance.

Key words: lithium ion battery; LiNiO₂; ion-exchange reaction; discharge capacity