基于导热反问题圆管内壁腐蚀减薄及污垢增厚的识别

张经豪, 熊平, 郝睿智, 卢涛

北京化工大学学报(自然科学版) ›› 2022, Vol. 49 ›› Issue (1) : 98-105.

PDF(2796 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年4月9日 星期三
Email Alert  RSS
PDF(2796 KB)
北京化工大学学报(自然科学版) ›› 2022, Vol. 49 ›› Issue (1) : 98-105. DOI: 10.13543/j.bhxbzr.2022.01.012
机电工程和信息科学

基于导热反问题圆管内壁腐蚀减薄及污垢增厚的识别

  • 张经豪, 熊平, 郝睿智, 卢涛
作者信息 +

Identification of corrosion thinning and fouling thickening on the inner wall of a circular tube based on the inverse heat conduction problem

  • ZHANG JingHao, XIONG Ping, HAO RuiZhi, LU Tao
Author information +
文章历史 +

摘要

以二维圆管为研究对象,基于有限元法的导热正问题(direct heat conduction problem,DHCP)以及基于列文伯格-马夸尔特(Levenberg-Marquardt,L-M)算法的优化方法来构建二维稳态导热反问题数学模型,通过关联COMSOL与MATLAB对圆管内壁腐蚀减薄和污垢增厚两类缺陷进行了定量识别。为了探究模型的有效性与精确性,分别设定了几种典型缺陷进行数值计算,并系统地分析了初值选取、管道外表面测温点数目及测温误差对反演精度的影响。数值实验结果表明该模型能够准确地识别圆管内壁面的两类缺陷,且具备良好的稳定性与抗噪性。

Abstract

Taking a two-dimensional circular tube as the research object, a mathematical model of the two-dimensional steady-state inverse heat conduction problem was constructed based on the direct heat conduction problem (DHCP) of the finite element method and an optimization method based on the Levenberg-Marquardt (L-M) algorithm. Through the combination of COMSOL and MATLAB, two types of defects-corrosion thinning and fouling thickening on the inner wall of the circular tube-were quantitatively identified. In order to explore the validity and accuracy of the model, several typical defects were employed for numerical calculations. The effects of the initial value selection, the number of temperature measurement points and the temperature measurement error on the outer surface of the pipeline on the accuracy of the inversion results were systematically analyzed. Numerical experiments prove that the model can accurately identify the two types of defects on the inner wall of a circular tube, which has good stability and noise resistance.

关键词

导热反问题 / 缺陷识别 / 列文伯格-马夸尔特(Levenberg-Marquardt,L-M)算法

Key words

inverse heat conduction problems / defect identification / Levenberg-Marquardt(L-M) algorithm

引用本文

导出引用
张经豪, 熊平, 郝睿智, 卢涛. 基于导热反问题圆管内壁腐蚀减薄及污垢增厚的识别[J]. 北京化工大学学报(自然科学版), 2022, 49(1): 98-105 https://doi.org/10.13543/j.bhxbzr.2022.01.012
ZHANG JingHao, XIONG Ping, HAO RuiZhi, LU Tao. Identification of corrosion thinning and fouling thickening on the inner wall of a circular tube based on the inverse heat conduction problem[J]. Journal of Beijing University of Chemical Technology, 2022, 49(1): 98-105 https://doi.org/10.13543/j.bhxbzr.2022.01.012

参考文献

[1] ZHANG F L, YUAN Z H. The detection and evaluation for the internal defection in industrial pipeline based on the virtual heat source temperature field[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(3):949-964.
[2] FAN C L, SUN F R, YANG L. A new computational scheme on quantitative inner pipe boundary identification based on the estimation of effective thermal conductivity[J]. Journal of Physics D:Applied Physics, 2008, 41(20):205501.
[3] 张林, 杨立, 范春利. 充分发展湍流管道内壁边界的红外定量识别[J]. 国防科技大学学报, 2019, 41(5):185-192. ZHANG L, YANG L, FAN C L. Infrared quantitative identification for inner boundary of fully developed turbulent pipeline[J]. Journal of National University of Defense Technology, 2019, 41(5):185-192. (in Chinese)
[4] 范春利. 几何形状导热反问题方法与应用[M]. 北京:科学出版社, 2015. FAN C L. Geometric inverse heat conduction problems:methods and applications[M]. Beijing:Science Press, 2015. (in Chinese)
[5] 熊平, 陆祺, 卢涛, 等. 基于顺序函数法的圆管内部流体温度反演[J]. 原子能科学技术, 2020, 54(9):1595-1603. XIONG P, LU Q, LU T, et al. Estimating fluid temperature of pipe based on sequential function specification method[J]. Atomic Energy Science and Technology, 2020, 54(9):1595-1603. (in Chinese)
[6] 韩雯雯, 卢涛. 基于共轭梯度法的圆管内部流体温度识别[J]. 工程热物理学报, 2015, 36(2):371-375. HAN W W, LU T. Estimating fluid temperature of pipe by using conjugate gradient method[J]. Journal of Engineering Thermophysics, 2015, 36(2):371-375. (in Chinese)
[7] HUANG C H, CHEN C W. A boundary-element-based inverse problem of estimating boundary conditions in an irregular domain with statistical analysis[J]. Numerical Heat Transfer, 1998, 33(2):251-267.
[8] 薛齐文, 杨海天, 胡国俊. 共轭梯度法求解瞬态传热组合边界条件多宗量反问题[J]. 应用基础与工程科学学报, 2004, 12(2):113-120. XUE Q W, YANG H T, HU G J. Solving inverse heat conduction problems with multi-variables of boundary conditions in transient-state via conjugate gradient method[J]. Journal of Basic Science and Engineering, 2004, 12(2):113-120. (in Chinese)
[9] 钱炜祺, 蔡金狮. 顺序函数法求解二维非稳态热传导逆问题[J]. 空气动力学学报, 2002, 20(3):274-281. QIAN W Q, CAI J S. Solving two-dimensional transient inverse heat conduction problem with sequential function method[J]. Acta Aerodynamica Sinica, 2002, 20(3):274-281. (in Chinese)
[10] KIM S K, JUNG B S, KIM H J, et al. Inverse estimation of thermophysical properties for anisotropic composite[J]. Experimental Thermal and Fluid Science, 2003, 27(6):697-704.
[11] LEE H L, CHANG W J, CHEN W L, et al. An inverse problem of estimating the heat source in tapered optical fibers for scanning near-field optical microscopy[J]. Ultramicroscopy, 2007, 107(8):656-662.
[12] FAZELI H, MIRZAEI M. Shape identification problems on detecting of defects in a solid body using inverse heat conduction approach[J]. Journal of Mechanical Science and Technology, 2012, 26(11):3681-3690.
[13] FAZELI H, MIRZAEI M, FOROOGHI P. Estimation of location and size of defects in a solid body via inverse heat conduction problem[C]//Proceedings of the 14th International Heat Transfer Conference. Washington DC, 2010:387-396.
[14] SIAVASHI M, KOWSARY F, ABBASI-SHAVAZI E. Detection of flaws in a two-dimensional body through measurement of surface temperatures and use of conjugate gradient method[J]. Computational Mechanics, 2010, 46(4):597-607.
[15] KOWSARY F, SIAVASHI M. Prediction of internal flaw parameters in a two-dimensional body using steady-state surface temperature data and IHCP methods[C]//Second UKSIM European Symposium on Computer Modeling and Simulation. Liverpool, 2008:341-346.
[16] CHEN W L, YANG Y C, LEE H L, et al. Inverse estimation for unknown fouling geometry on inner wall of forced-convection pipe[J]. Applied Mathematics and Mechanics(English Edition), 2011, 32(1):55-68.
[17] CHEN W L, YANG Y C. Inverse estimation for the unknown frost geometry on the external wall of a forced-convection pipe[J]. Energy Conversion and Management, 2009, 50(6):1457-1464.
[18] CHEN W L, YANG Y C, LEE H L, et al. Estimation for inner surface geometry of a two-layer-wall furnace with inner wall made of functionally graded materials[J]. International Communications in Heat and Mass Transfer, 2018, 97:143-150.
[19] WANG S H, LIN S C, YANG Y C. Geometry estimation for the inner surface in a furnace wall made of functionally graded materials[J]. International Communications in Heat and Mass Transfer, 2015, 67:1-7.
[20] 苟小龙, 张建涛, 王广军. 基于导热反问题的管道内部缺陷诊断[J]. 重庆大学学报, 2010, 33(2):42-46. GOU X L, ZHANG J T, WANG G J. Defects detection in the inner surface of pipes based on inverse heat conduction problem[J]. Journal of Chongqing University, 2010, 33(2):42-46. (in Chinese)
[21] 范春利, 孙丰瑞, 杨立. 基于红外测温的圆管内壁不规则边界的识别算法研究[J]. 热科学与技术, 2006, 5(2):112-117. FAN C L, SUN F R, YANG L. Algorithm study on identification of pipeline's irregular inner boundary for infrared thermography[J]. Journal of Thermal Science and Technology, 2006, 5(2):112-117. (in Chinese)
[22] 张林, 范春利, 孙丰瑞, 等. 基于APDL的管道内壁边界识别算法[J]. 红外与激光工程, 2015, 44(5):1477-1484. ZHANG L, FAN C L, SUN F R, et al. Identification algorithm of pipelines' inner boundary based on APDL[J]. Infrared and Laser Engineering, 2015, 44(5):1477-1484. (in Chinese)
[23] CHENG C H, CHANG M H. Shape identification by inverse heat transfer method[J]. Journal of Heat Transfer, 2003, 125(2):224-231.
[24] HUANG C H, TSAI C C. A transient inverse two-dimensional geometry problem in estimating time-dependent irregular boundary configurations[J]. International Journal of Heat and Mass Transfer, 1998, 41(12):1707-1718.
[25] 张林, 杨立, 寇蔚, 等. 基于一维加权法的交界面边界形状识别[J]. 红外技术, 2018, 40(6):590-597. ZHANG L, YANG L, KOU W, et al. Inverse identification of interface geometry in a multiple region domain based on one-dimensional weighting method[J]. Infrared Technology, 2018, 40(6):590-597. (in Chinese)
[26] MOHASSEB S, MORADI M, SOKHANSEFAT T, et al. A novel approach to solve inverse heat conduction problems:coupling scaled boundary finite element method to a hybrid optimization algorithm[J]. Engineering Analysis with Boundary Elements, 2017, 84:206-212.
[27] LIU F B. A hybrid method for the inverse heat transfer of estimating fluid thermal conductivity and heat capacity[J]. International Journal of Thermal Sciences, 2011, 50(5):718-724.
[28] GARCÍA E, MÉRESSE D, POMBO I, et al. Identification of heat partition in grinding related to process parameters, using the inverse heat flux conduction model[J]. Applied Thermal Engineering, 2014, 66(1-2):122-130.
[29] XIE T, HE Y L, TONG Z X, et al. An inverse analysis to estimate the endothermic reaction parameters and physical properties of aerogel insulating material[J]. Applied Thermal Engineering, 2015, 87:214-224.
[30] ZHANG B W, MEI J, ZHANG C Y, et al. A general method for predicting the bank thickness of a smelting furnace with phase change[J]. Applied Thermal Engineering, 2019, 162:114219.
PDF(2796 KB)

1226

Accesses

0

Citation

Detail

段落导航
相关文章

/