基于干扰观测器的AUV深度自适应终端滑模控制

饶志荣, 董绍江, 王军, 蔡巍巍, 刘伟

北京化工大学学报(自然科学版) ›› 2021, Vol. 48 ›› Issue (1) : 103-110.

PDF(940 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年4月10日 星期四
Email Alert  RSS
PDF(940 KB)
北京化工大学学报(自然科学版) ›› 2021, Vol. 48 ›› Issue (1) : 103-110. DOI: 10.13543/j.bhxbzr.2021.01.014
机电工程和信息科学

基于干扰观测器的AUV深度自适应终端滑模控制

  • 饶志荣1, 董绍江1, 王军1, 蔡巍巍2, 刘伟1
作者信息 +

Adaptive terminal sliding mode control of autonomous underwater vehicle (AUV) depth based on a disturbance observer

  • RAO ZhiRong1, DONG ShaoJiang1, WANG Jun1, CAI WeiWei2, LIU Wei1
Author information +
文章历史 +

摘要

针对欠驱动自治水下机器人(autonomous underwater vehicle,AUV)在外部干扰和系统内部扰动下深度难以控制的问题,提出基于非线性干扰观测器(nonlinear disturbance observer,NDO)的自适应终端滑模控制方法。首先建立欠驱动AUV在垂直面上的状态方程并对其简化,其次根据简化后的系统状态方程构建NDO对外部干扰进行观测,再结合反步法设计出自适应终端滑模控制器;最后通过李雅普诺夫稳定性理论证明控制系统的稳定性。结果表明:欠驱动AUV最大跟踪误差为0.137 5 m,峰值时间为2.1 s,证明了所设计的控制器能够实现深度控制,降低抖振,具有较强的鲁棒性。

Abstract

The depth of an underactuated autonomous underwater vehicle (AUV) is difficult to control under external and internal disturbances. In an attempt to solve this problem, an adaptive terminal sliding control method based on a nonlinear disturbance observer (NDO) is proposed in this work. The state equation for the underactuated AUV in the vertical plane is first established and simplified. Secondly, based on the simplified state equation, the NDO to observe the external interference is constructed, and then the self-adaptive terminal sliding mode controller is designed by using a backstepping method. Finally, the stability of the control system is shown to be stable by using Lyapunov stability theory. The simulation results show that the maximum tracking error of the underactuated AUV is 0.137 5 m and the peak time is 2.1 s. These results show that the controller can achieve depth control with low chattering and strong robustness.

关键词

自治水下机器人 / 深度跟踪 / 非线性干扰观测器 / 自适应终端滑模控制

Key words

autonomous underwater vehicle (AUV) / depth tracking / nonlinear disturbance observer / adaptive terminal sliding mode control

引用本文

导出引用
饶志荣, 董绍江, 王军, 蔡巍巍, 刘伟. 基于干扰观测器的AUV深度自适应终端滑模控制[J]. 北京化工大学学报(自然科学版), 2021, 48(1): 103-110 https://doi.org/10.13543/j.bhxbzr.2021.01.014
RAO ZhiRong, DONG ShaoJiang, WANG Jun, CAI WeiWei, LIU Wei. Adaptive terminal sliding mode control of autonomous underwater vehicle (AUV) depth based on a disturbance observer[J]. Journal of Beijing University of Chemical Technology, 2021, 48(1): 103-110 https://doi.org/10.13543/j.bhxbzr.2021.01.014

参考文献

[1] 王金强, 王聪, 魏英杰, 等. 欠驱动AUV自适应神经网络反步滑模跟踪控制[J]. 华中科技大学学报(自然科学版), 2019, 47(12):12-17. WANG J Q, WANG C, WEI Y J, et al. Path following of an underactuated AUV based on adaptive neural network backstepping sliding mode control[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(12):12-17. (in Chinese)
[2] SUBUDHI B, MUKHERJEE K, GHOSH S. A static output feedback control design for path following of autonomous underwater vehicle in vertical plane[J]. Ocean Engineering, 2013, 63:72-76.
[3] 贾鹤鸣, 宋文龙, 陈子印. 基于自适应反步法的自主水下机器人变深控制[J]. 华南理工大学学报(自然科学版), 2013, 41(1):15-20. JIA H M, SONG W L, CHEN Z Y. Diving control of autonomous underwater vehicle based on adaptive backstepping method[J]. Journal of South China University of Technology (Natural Science Edition), 2013, 41(1):15-20. (in Chinese)
[4] LAKHEKAR G V, WAGHMARE L M, LONDHE P S. Enhanced dynamic fuzzy sliding mode controller for autonomous underwater vehicles[C]//2015 IEEE Underwater Technology. Chennai, 2015:15143609.
[5] YANG J, LI S H, SU J Y, et al. Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances[J]. Automatica, 2013, 49(7):2287-2291.
[6] 杨俭健, 付宗国. 基于滑模控制的ROV深度方向轨迹跟踪研究[J]. 浙江海洋学院学报(自然科学版), 2014, 33(2):175-179. YANG J J, FU Z G. Research on the depth direction trajectory tracking of ROV controlled by sliding mode variable structure[J]. Journal of Zhejiang Ocean University (Natural Science), 2014, 33(2):175-179. (in Chinese)
[7] GAO F D, PAN C Y, HAN Y Y, et al. Nonlinear trajectory tracking control of a new autonomous underwater vehicle in complex sea conditions[J]. Journal of Central South University, 2012, 19(7):1859-1868.
[8] 魏延辉, 周卫祥, 贾献强, 等. AUV模型解耦水平运动多控制器联合控制[J]. 华中科技大学学报(自然科学版), 2016, 44(4):37-42. WEI Y H, ZHOU W X, JIA X Q, et al. Model decoupling and multi-controller joint control of horizontal movement for AUV[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(4):37-42. (in Chinese)
[9] 张利军, 齐雪, 赵杰梅, 等. 垂直面欠驱动自治水下机器人定深问题的自适应输出反馈控制[J]. 控制理论与应用, 2012, 29(10):1371-1376. ZHANG L J, QI X, ZHAO J M, et al. Depth-keeping control for autonomous underwater vehicle in vertical plane using adaptive output feedback controller[J]. Control Theory and Applications, 2012, 29(10):1371-1376. (in Chinese)
[10] WANG N, QIAN C J, SUN J C, et al. Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles[J]. IEEE Transactions on Control Systems Technology, 2016, 24(4):1454-1462.
[11] FOSSEN T I. Marine control systems[M]. Trondheim:Marine Cybernetics, 2002.
[12] RUIZ-DUARTE J E, LOUKIANOV A G. Higher order sliding mode control for autonomous underwater vehicles in the diving plane[J]. IFAC-PapersOnLine, 2015, 48(16):49-54.
[13] 曾伟鹏, 邵辉, 洪雪梅, 等. 采用非线性干扰观测器的机械臂补偿型滑模控制[J]. 华侨大学学报(自然科学版), 2020, 41(4):415-422. ZENG W P, SHAO H, HONG X M, et al. Compensated sliding mode control of manipulator arm using nonlinear disturbance observer[J]. Journal of Huaqiao University (Natural Science), 2020, 41(4):415-422. (in Chinese)
[14] MOHAMMED S, HUO W G, HUANG J, et al. Nonlinear disturbance observer based sliding mode control of a human-driven knee joint orthosis[J]. Robotics and Autonomous Systems, 2016, 75:41-49.
[15] YANG J, FENG J F, QI D, et al. Longitudinal motion control of underwater vehicle based on fast smooth second order sliding mode[J]. Optik, 2016, 127(20):9118-9130.

基金

国家自然基金(51775072);重庆市科技创新领军人才支持计划(CSTCCCXLJRC201920);重庆交通大学研究生科研创新项目(20160108)
PDF(940 KB)

2158

Accesses

0

Citation

Detail

段落导航
相关文章

/