埃洛石纳米管对聚乳酸基材料的改性研究进展

庄卓欣, 金婷婷, 宁振勃, 蒋妮, 甘志华

北京化工大学学报(自然科学版) ›› 2021, Vol. 48 ›› Issue (1) : 1-8.

PDF(2082 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年4月5日 星期六
Email Alert  RSS
PDF(2082 KB)
北京化工大学学报(自然科学版) ›› 2021, Vol. 48 ›› Issue (1) : 1-8. DOI: 10.13543/j.bhxbzr.2021.01.001
综述

埃洛石纳米管对聚乳酸基材料的改性研究进展

  • 庄卓欣, 金婷婷, 宁振勃, 蒋妮, 甘志华
作者信息 +

Progress in the modification of poly(lactic acid)-based materials by halloysite nanotubes

  • ZHUANG ZhuoXin, JIN TingTing, NING ZhenBo, JIANG Ni, GAN ZhiHua
Author information +
文章历史 +

摘要

埃洛石纳米管(HNTs)是一种天然的无机纳米管状材料,具有与高岭土相似的化学组成以及与碳纳米管类似的一维结构,因其来源广泛、价格低廉,并且具有较大的长径比、较大的比表面积以及高模量等特点,近年来受到广泛关注并被应用于高分子材料的改性之中。本文在HNTs的结构特点和现有的表面改性方法的基础上,梳理了近年来HNTs用于聚乳酸(PLA)基聚合物复合材料改性的相关研究工作,重点关注了HNTs对材料的热稳定性、相结构、结晶性能、降解性能、机械性能以及生物医学性能方面的影响,展望了HNTs改性PLA复合材料的研究和应用前景。

Abstract

Halloysite nanotubes (HNTs) are naturally occurring inorganic nanotubes, which have a similar chemical composition to kaolinite and a similar structure to carbon nanotubes. Due to their high abundance, low price, high aspect ratio, large specific surface area and high modulus, HNTs have attracted considerable attention in recent years and have been employed in the modification of polymer materials. Focusing on the structural characteristics and surface modification of HNTs, this paper reviews applications of HNTs in the modification of poly(lactic acid) (PLA)-based polymer composites, highlighting the effects of HNTs on the thermal stability, phase structure, crystallization, degradation, mechanical properties and biomedical performance of the modified materials. Future application prospects of HNTs-modified PLA composites are also discussed.

关键词

埃洛石纳米管 / 聚乳酸 / 改性 / 复合物

Key words

halloysite nanotubes / poly(lactic acid) / modification / composite

引用本文

导出引用
庄卓欣, 金婷婷, 宁振勃, 蒋妮, 甘志华. 埃洛石纳米管对聚乳酸基材料的改性研究进展[J]. 北京化工大学学报(自然科学版), 2021, 48(1): 1-8 https://doi.org/10.13543/j.bhxbzr.2021.01.001
ZHUANG ZhuoXin, JIN TingTing, NING ZhenBo, JIANG Ni, GAN ZhiHua. Progress in the modification of poly(lactic acid)-based materials by halloysite nanotubes[J]. Journal of Beijing University of Chemical Technology, 2021, 48(1): 1-8 https://doi.org/10.13543/j.bhxbzr.2021.01.001

参考文献

[1] WU F, ZHENG J Q, LI Z X, et al. Halloysite nanotubes coated 3D printed PLA pattern for guiding human mesenchymal stem cells (hMSCs) orientation[J]. Chemical Engineering Journal, 2019, 359:672-683.
[2] YAH W O, XU H, SOEJIMA H, et al. Biomimetic dopamine derivative for selective polymer modification of halloysite nanotube lumen[J]. Journal of the American Chemical Society, 2012, 134(29):12134-12137.
[3] 刘明贤, 周长忍, 贾德民. 埃洛石纳米管及其复合材料[M]. 北京:科学出版社, 2019:39-41. LIU M X, ZHOU C R, JIA D M. Halloysite nanotubes and their composites[M]. Beijing:Science Press, 2019:39-41. (in Chinese)
[4] LIU M X, JIA Z X, JIA D M, et al. Recent advance in research on halloysite nanotubes-polymer nanocomposite[J]. Progress in Polymer Science, 2014, 39(8):1498-1525.
[5] XIE X L, MAI Y W, ZHOU X P. Dispersion and alignment of carbon nanotubes in polymer matrix:a review[J]. Materials Science & Engineering:R:Reports, 2005, 49(4):89-112.
[6] DONG Y, MARSHALL J, HAROOSH H J, et al. Polylactic acid (PLA)/halloysite nanotube (HNT) composite mats:influence of HNT content and modification[J]. Composites Part A:Applied Science and Manufacturing, 2015, 76:28-36.
[7] KRUGLIKOV A, VASILCHENKO A, KASPRZHITSKⅡ A, et al. Atomic-level understanding of interface interactions in a halloysite nanotubes-PLA nanocomposite[J]. RSC Advances, 2019, 9(67):39505-39514.
[8] LIU M X, ZHANG Y, ZHOU C R. Nanocomposites of halloysite and polylactide[J]. Applied Clay Science, 2013, 75-76:52-59.
[9] CAVALLARO G, LAZZARA G, MILIOTO S, et al. Hydrophobically modified halloysite nanotubes as reverse micelles for water-in-oil emulsion[J]. Langmuir, 2015, 31(27):7472-7478.
[10] LVOV Y, ABDULLAYEV E. Functional polymer-clay nanotube composites with sustained release of chemical agents[J]. Progress in Polymer Science, 2013, 38(10-11):1690-1719.
[11] ZENG S S, REYES C, LIU J J, et al. Facile hydroxylation of halloysite nanotubes for epoxy nanocomposite applications[J]. Polymer, 2014, 55:6519-6528.
[12] GUO J H, QIAO J X, ZHANG X. Effect of an alkalized-modified halloysite on PLA crystallization, morphology, mechanical, and thermal properties of PLA/halloysite nanocomposites[J]. Journal of Applied Polymer Science, 2016, 133(48):44272.
[13] TERZOPOULOU Z, PAPAGEORGIOU D G, PAPAGEORGIOU G Z, et al. Effect of surface functionalization of halloysite nanotubes on synthesis and thermal properties of poly(ε-caprolactone)[J]. Journal of Materials Science, 2018, 53(9):6519-6541.
[14] KRISHNAIAH P, RATNAM C T, MANICKAM S. Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties[J]. Applied Clay Science, 2017, 135:583-595.
[15] KUBADE P, TAMBE P. Influence of surface modification of halloysite nanotubes and its localization in PP phase on mechanical and thermal properties of PP/ABS blends[J]. Composite Interfaces, 2017, 24(5):469-487.
[16] LUO B H, HSU C E, LI J H, et al. Nano-composite of poly(L-lactide) and halloysite nanotubes surface-grafted with L-lactide oligomer under microwave irradiation[J]. Journal of Biomedical Nanotechnology, 2013, 9(4):649-658.
[17] LUO C, ZOU Z P, LUO B H, et al. Enhanced mechanical properties and cytocompatibility of electrospun poly-(L-lactide) composite fiber membranes assisted by polydopamine-coated halloysite nanotubes[J]. Applied Surface Science, 2016, 369:82-91.
[18] RISYON N P, OTHMAN S H, BASHA R K, et al. Characterization of polylactic acid/halloysite nanotubes bionanocomposite films for food packaging[J]. Food Packaging and Shelf Life, 2020, 23:100450.
[19] SHARMA S, SINGH A A, MAJUMDAR A, et al. Tailoring the mechanical and thermal properties of polylactic acid-based bionanocomposite films using halloysite nanotubes and polyethylene glycol by solvent casting process[J]. Journal of Materials Science, 2019, 54(12):8971-8983.
[20] OLIAEI E, KAFFASHI B. Investigation on the properties of poly(L-lactide)/thermoplastic poly(ester urethane)/halloysite nanotube composites prepared based on prediction of halloysite nanotube location by measuring free surface energies[J]. Polymer, 2016, 104:104-114.
[21] LUYT A S, KELNAR I. Effect of halloysite nanotubes on the thermal degradation behaviour of poly(ε-caprolactone)/poly(lactic acid) microfibrillar composites[J]. Polymer Testing, 2017, 60:166-172.
[22] RASHMI B J, PRASHANTHA K, LACRAMPE M F, et al. Toughening of poly(lactic acid) without sacrificing stiffness and strength by melt-blending with polyamide 11 and selective localization of halloysite nanotubes[J]. Express Polymer Letters, 2015, 9(8):721-735.
[23] ERPEK C E Y, OZKOC G, YILMAZER U. Effects of halloysite nanotubes on the performance of plasticized poly(lactic acid)-based composites[J]. Polymer Composites, 2016, 37(11):3134-3148.
[24] KAYGUSUZ I, KAYNAK C. Influences of halloysite nanotubes on crystallisation behaviour of polylactide[J]. Plastics Rubber and Composites, 2015, 44(2):41-49.
[25] 梁丽金, 钟旭飘, 谢德明. PLA/HNTs纳米复合材料的制备、性能及其发泡行为[J]. 材料科学与工程学报, 2015, 33(5):743-747, 758. LIANG L J, ZHONG X P, XIE D M. Preparation and properties of PLA/HNTs nanocomposites and its foaming[J]. Journal of Materials Science and Engineering, 2015, 33(5):743-747, 758. (in Chinese)
[26] 张显勇, 王忠, 贾仕奎, 等. 埃洛石纳米管/PLA复合材料的断口形貌、结晶行为及力学性能研究[J]. 塑料工业, 2018, 46(12):51-55, 17. ZHANG X Y, WANG Z, JIA S K, et al. Study on fracture morphology, mechanical properties and crystallization behavior of nano-HNT/PLA composites[J]. Plastics Industry, 2018, 46(12):51-55, 17. (in Chinese)
[27] XU W, LUO B H, WEN W, et al. Surface modification of halloysite nanotubes with L-lactic acid:an effective route to high-performance poly(L-lactide) composites[J]. Journal of Applied Polymer Science, 2015, 132(7):41451.
[28] CASTRO-AGUIRRE E, AURAS R, SELKE S, et al. Impact of nanoclays on the biodegradation of poly(lactic acid) nanocomposites[J]. Polymers, 2018, 10(2):202.
[29] MONTAVA-JORDA S, CHACON V, LASCANO D, et al. Manufacturing and characterization of functionalized aliphatic polyester from poly(lactic acid) with halloysite nanotubes[J]. Polymers, 2019, 11(8):1314.
[30] TORRES E, DOMINGUEZ-CANDELA I, CASTELLO-PALACIOS S, et al. Development andcharacterization of polyester and acrylate-based composites with hydroxyapatite and halloysite nanotubes for medical applications[J]. Polymers, 2020, 12(8):1703.
[31] BUGATTI V, SORRENTINO A, GORRASI G. Encapsulation of lysozyme into halloysite nanotubes and dispersion in PLA:structural and physical properties and controlled release analysis[J]. European Polymer Journal, 2017, 93:495-506.
[32] ERTAS M, ALTUNTAS E, CAVDAR A D. Effects of halloysite nanotube on the performance of natural fiber filled poly(lactic acid) composites[J]. Polymer Composites, 2019, 40(11):4238-4247.
[33] SHARMA S, SINGH A A, MAJUMDAR A, et al. Harnessing the ductility of polylactic acid/halloysite nanocomposites by synergistic effects of impact modifier and plasticiser[J]. Composites Part B:Engineering, 2020, 188:107845.
[34] PRASHANTHA K, LECOUVET B, SCLAVONS M, et al. Poly(lactic acid)/halloysite nanotubes nanocomposites:structure, thermal, and mechanical properties as a function of halloysite treatment[J]. Journal of Applied Polymer Science, 2013, 128(3):1895-1903.
[35] GUO Y C, HE S, YANG K, et al. Enhancing the mechanical properties of biodegradable polymer blends using tubular nanoparticle stitching of the interfaces[J]. ACS Applied Materials & Interfaces, 2016, 8(27):17565-17573.
[36] VENKATESH C, CLEAR O, MAJOR I, et al. Faster release of lumen-loaded drugs than matrix-loaded equivalent in polylactic acid/halloysite nanotubes[J]. Materials, 2019, 12(11):1830.
[37] ZHANG X Z, GUO R, XU J Q, et al. Poly(L-lactide)/halloysite nanotube electrospun mats as dual-drug delivery systems and their therapeutic efficacy in infected full-thickness burns[J]. Journal of Biomaterials Applications, 2015, 30(5):512-525.
[38] LIU K, LI W Y, CHEN S T, et al. The design, fabrication and evaluation of 3D printed gHNTs/gMgO whiskers/PLLA composite scaffold with honeycomb microstructure for bone tissue engineering[J]. Composites Part B:Engineering, 2020, 192:108001.
[39] GUO W, XU L, FENG P, et al. In-situ growth of silica nano-protrusions on halloysite nanotubes for interfacial reinforcement in polymer/halloysite scaffolds[J]. Applied Surface Science, 2020, 513:145772.

基金

国家自然科学基金(51603005)
PDF(2082 KB)

2220

Accesses

0

Citation

Detail

段落导航
相关文章

/